Flavor-Changing Light Bosons with Accidental Longevity

Kun-Feng Lyu School of Physics and Astronomy, University of Minnesota

In collaboration with Yohei Ema, Zhen Liu and Maxim Pospelov *JHEP* 02 (2023) 135 arXiv:2211.00664

Outline

- Motivation
- Model
- Muon Magnetic Moment
- e-mu case
- mu-tau case

Motivation

- The latest muon g-2 measurement shows 3.7 sigma deviation from SM prediction.
- There have been many BSM scenarios to explain.
- We propose a simple scalar flavor off-diagonally coupled to leptons. A new mass window is probed.
- In the mass window, it becomes accidentally long-lived and thus can be probed in various experiments.

Model

• Consider a complex scalar phi carrying +1 muon number and -1 l number

$$\mathcal{L} = |\partial \phi|^2 - m_{\phi}^2 |\phi|^2 + \phi \,\bar{\mu} (g_V + g_A \gamma_5) \,l + \phi^* \bar{l} (g_V^* - g_A^* \gamma_5) \,\mu,$$

• In the mass range, it can become long-lived accidentally

$$|m_{\mu} - m_l| < m_{\phi} < m_{\mu} + m_l$$

$$m_\phi < m_\mu + m_l$$
 phi can not decay to mu + l

$$|m_{\mu}-m_{l}| < m_{\phi}$$
 Avoid lepton decay branching ratio.

Muon Magnetic Moment

The latest measurement

$$\Delta a_{\mu} = a_{\mu}^{\text{exp}} - a_{\mu}^{\text{SM}} = (251 \pm 59) \times 10^{-11}$$
 2104.03281

$$a_{\mu}^{(\phi)} = \frac{m_{\mu}}{8\pi^{2}} \int_{0}^{1} dz \frac{(1-z)^{2} \left[(|g_{V}|^{2} + |g_{A}|^{2}) z m_{\mu} + (|g_{V}|^{2} - |g_{A}|^{2}) m_{l} \right]}{-z(1-z)m_{\mu}^{2} + (1-z)m_{l}^{2} + z m_{\phi}^{2}}$$

To avoid EDM, we require $\operatorname{Im}[g_V^*g_A]=0$

e-mu case

Muon g-2 constraint

Shaded: electron g-2 exclusion region

Muonium
 the quasi-bound state of mu
 and e, can decay to phi plus a photon.

$$Br(Mu^{(S=1)} \to invisible) < 5.7 \times 10^{-6}$$

1209.0060

At this region, the decay length is around 10^{10} km

LSND Experiment

- We need intense muon source.
- Originally to measure mu-neutrino to e-neutrino oscillation.
- Mu+ can be produced by the meson pi+, it can form muonium when traveling through the water.
- muonium decay -> phi
 Phi decay in the LSND detector.

The parameter space that can explain muon g-2 is excluded by the LSND!

mu-tau case

- Phi is heavier than that in e-mu case.
- We can probe it in the higher energy proton beamdump experiments.
- There are mainly 3 channels for the production.

Experiment	$E_{ m beam}({ m GeV})$	POT	D (m)	L (m)	$A~(m^2)$	$\epsilon_{ m acpt}^{ m geo}$	Major production
CHARM	400	2×10^{18}	480	35	3×3	1.3%	EW, D_s , μ OT
NuTeV	800	μOT	850	34	2.54×2.54	$\mathcal{O}(1)\%$	$\mu \mathrm{OT}$
SHiP	400	2×10^{20}	60	60	5×10	54%	EW, D_s , μ OT

Muon g-2

The corresponding decay length is around 10 km.

Can be detected in the far detector.

- CHARM and NuTeV cannot exclude the parameter region that explains the muon g — 2 anomaly.
- While the future SHiP experiment covers the whole parameter space.

Conclusion

- We study the phenomenology of a complex scalar coupled to mu and either e or tau motivated by muon g-2.
- The scalar becomes long-lived in the mass window we considered.
- For e-mu case, phi can be produced by the muonium that is formed in LSND proton beamdump experiment. The excess events shows the the g-2 allowed region is excluded.
- For mu-tau case, phi can be produced by the Drell-Yan process, heavy meson decay and muon-target. The future SHiP can cover most parameter space.

Thank you!

Backup

A real scalar will induce the Muonium anti-muonium transition.

Also it can induce the same sign lepton signals.

phi can induce EDM

$$d_{\mu} = -\frac{\operatorname{Im}(g_{V}^{*}g_{A})m_{l}}{8\pi^{2}} \int_{0}^{1} dz \frac{(1-z)^{2}}{-z(1-z)m_{\mu}^{2} + (1-z)m_{l}^{2} + zm_{\phi}^{2}},$$

$$d_{l} = -\frac{\operatorname{Im}(g_{V}^{*}g_{A})m_{\mu}}{8\pi^{2}} \int_{0}^{1} dz \frac{(1-z)^{2}}{-z(1-z)m_{l}^{2} + (1-z)m_{\mu}^{2} + zm_{\phi}^{2}}.$$

$$\operatorname{Im}[g_V^*g_A] = 0$$

The high-intensity 798 MeV proton beam from the linear accelerator generated a large pion flux from the water target.