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Motivation

What is the dark matter particle?

What’s the origin of the small neutrino masses?

What’s the origin of the baryon asymmetry in the universe?
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We want to explore (minimal) extensions of the standard model 
where the new fields work together towards the solution of three 
unanswered questions:
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Table 1: Particle content of the model.
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These conditions are trivially satisfied if we demand that all �’s are positive.

2.1 Symmetry breaking and spectrum

The scalar potential (2) allows a vacuum expectation value (VEV) for the singlet scalar, hSi = vS/
p
2,

in addition to the Higgs VEV, hHi = v/
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Regarding the Z2-odd fermionic sector, this model contains one charged Dirac fermion  ± with
mass M and two neutral Dirac fermions, �0

j
(j = 1, 2). In the basis NLi = ( 0

L
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where MN = hcvS/
p
2 is the Dirac mass term for  L,R, which results after the Z0

2 symmetry breaking.
This matrix is diagonalized by the bi-unitary transformation
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where ✓L,R are mixing angles. In this work, the lightest of these Dirac fermions, �0
1, is the candidate

for the DM particle. Notice our choice to parametrize the fermionic sector using m�
0
1
, m�

0
2
, ✓L, and

✓R, instead of M , hc, hd, and vS.

3 Dirac neutrino masses

In this framework, the scalars H and S acquire VEVs. As a result of this symmetry breaking,
neutrinos get masses via the five-dimensional e↵ective operator

L
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which is generated at the one-loop level. Ref. [36] has performed a systematic study of the one-loop
topologies that give rise to this operator2. In our specific scenario, Dirac neutrino masses arise from
the one-loop diagram shown in Fig. 1. In the limit of low neutrino momentum, that diagram yields
the mass matrix
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where ⇤i is the loop factor, defined as
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In particular, the model proposed in this work is similar to the topology T1-2-A-I (↵ = 0) in Ref. [36]. However,

in that case all new fermions are vector-like. Instead, we use chiral fermions with fewer degrees of freedom.

5

No Majorana mass
No tree-level seesaw
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In particular, the model proposed in this work is similar to the topology T1-2-A-I (↵ = 0) in Ref. [36]. However,

in that case all new fermions are vector-like. Instead, we use chiral fermions with fewer degrees of freedom.
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In particular, the model proposed in this work is similar to the topology T1-2-A-I (↵ = 0) in Ref. [36]. However,

in that case all new fermions are vector-like. Instead, we use chiral fermions with fewer degrees of freedom.
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In particular, the model proposed in this work is similar to the topology T1-2-A-I (↵ = 0) in Ref. [36]. However,

in that case all new fermions are vector-like. Instead, we use chiral fermions with fewer degrees of freedom.
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We can invert the problem and use the PMNS matrix and neutrino data 
to obtain 12 of the unknown parameters
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Stabilizes DM
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mass M and two neutral Dirac fermions, �0

j
(j = 1, 2). In the basis NLi = ( 0

L
, L), N

†
Ri

=
(( 0

R
)†, ( R)†), the fermionic mass matrix is given by

m 0 =

✓
M 

hdvp
2

0 MN

◆
, (15)

where MN = hcvS/
p
2 is the Dirac mass term for  L,R, which results after the Z0

2 symmetry breaking.
This matrix is diagonalized by the bi-unitary transformation

V
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, (16)

where the mass eigenstates, �0
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= (�L,�
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R
)j, are defined by
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where ✓L,R are mixing angles. In this work, the lightest of these Dirac fermions, �0
1, is the candidate

for the DM particle. Notice our choice to parametrize the fermionic sector using m�
0
1
, m�

0
2
, ✓L, and

✓R, instead of M , hc, hd, and vS.

3 Dirac neutrino masses

In this framework, the scalars H and S acquire VEVs. As a result of this symmetry breaking,
neutrinos get masses via the five-dimensional e↵ective operator

L
D

5 = �
g↵�

⇤
L̄↵
eH⌫R�S + h.c. , (18)

which is generated at the one-loop level. Ref. [36] has performed a systematic study of the one-loop
topologies that give rise to this operator2. In our specific scenario, Dirac neutrino masses arise from
the one-loop diagram shown in Fig. 1. In the limit of low neutrino momentum, that diagram yields
the mass matrix
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where ⇤i is the loop factor, defined as
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2
In particular, the model proposed in this work is similar to the topology T1-2-A-I (↵ = 0) in Ref. [36]. However,

in that case all new fermions are vector-like. Instead, we use chiral fermions with fewer degrees of freedom.

5
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R j = Uji (

Ψ0 †
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i
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Fig. 2: Diagrams that contribute to the annihilation process �0
1�̄

0
1 ! h2h2.

4 Dark matter

In this work, the Dirac fermion �
0
1 is the DM candidate while the scalars �i are chosen to be much

heavier than �
0
j
. In this section, we discuss the main process that sets the relic abundance of DM as

well as the direct detection of such a particle.

4.1 Dark matter relic density

In the class of models that we study in this article, �0
1 couples to the Higgs and to the Z boson

through the singlet-doublet mixing. This implies that the couplings of the DM particle to the
Z vector are largely constrained by direct detection experiments, leading to a mostly singlet DM
candidate as seen numerically in the next section. In Ref. [11], this fact restricted the allowed
parameter space to quasi-degenerate mass eigenstates for the fermionic fields and the DM abundance
was determined mainly through coannihilations. In our work, the presence of the additional scalar S
adds new annihilation channels, opening up the range of masses for the fermions and providing a richer
phenomenology. Specifically, the processes involved in the calculation of the DM relic abundance
include �

0
i
�̄j

0
! hkhl, �0

i
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0
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+
W
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i
�̄j

0
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+
! ff̄ 0, �0
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�
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±,
and �

±
�
⌥
! W

+
W

�. As explained in the next section, our numerical analysis takes into account
all these channels; however, the most relevant process is �0

1�̄
0
1 ! h2h2, which gets contributions from

the diagrams shown in Fig. 2.
The early thermal evolution of our DM candidate follows the standard WIMP freeze-out mecha-

nism. In the initial state, the DM species was in thermal equilibrium with the rest of particles in the
universe. As the universe adiabatically cools down to a temperature below the DM mass, the DM
annihilation rate is overtaken by the expansion of the universe, � ⌧ H, and a relic density of DM
is frozen-out. The current relic abundance of DM is computed by solving the Boltzmann equation,
which yields [39]

⌦� = 2

r
4⇡3g⇤(m�)

45

8⇡

90H2
0

xf

h�vi

T
3
0

M
3
Pl

, (24)

where h�vi is the thermally-averaged annihilation cross-section, g⇤(m) is the e↵ective number of
degrees of freedom at T = m, and xf ⌘ m/Tfreeze�out. The factor of 2 in front of the right-hand
side of the equation above is due to the fact that we have a Dirac particle and nDM = n� + n�̄ [40].
The partial-wave expansion of the annihilation cross-section, h�vi ⇡ a + bv

2 + O(v4), leads to the
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SARAH+SPheno: Mass spectrum

The blue dots give the correct relic abundance and reproduce the 
neutrino parameters  

Fig. 6: M �MN plane for the scan done in this work. The blue dots give the correct relic abundance
and reproduce the neutrino parameters. The pink-shaded region corresponds to overabundance or
underabundance of DM. The green-shaded region is excluded by direct detection (DD) experiments.

SUSY models and can be recast in this analysis. The observed limit rules out masses up to 120 GeV
for �0

1, with m�± . 420 GeV. However, in that case, the �± are wino-like particles with a production
cross-section that is larger than in this model, where �± are higgsino-like particles (SU(2) doublet).
With this in mind, we estimate that the low production rate decreases the values of MN that can
be probed to MN . 100 GeV, which makes it inapplicable to our allowed region of parameter space.
Nevertheless, a better analysis needs to be done in this direction and we leave it for future work.

5 Conclusions

After several decades of model building and experimental search, the nature of DM is still unknown.
Among the many possible scenarios, a Dirac fermion is a viable candidate within the singlet-doublet
scenario SD3M [11]. In this paper, we have minimally extended that model in order to generate
Dirac neutrino masses via the radiative seesaw mechanism. We have scanned the parameter space
requiring that the correct DM relic abundance and current neutrino data are reproduced while being
compatible with direct detection experiments. We found a DM candidate that is a Dirac fermion
resulting from a mixture of new singlet-doublet fields with mass 65GeV . m�

0
1
. 1.1TeV. The

inclusion of the new scalar S opens a new portal, which, in association with the vector Z portal,
contributes to the SI cross-section, widening the allowed parameter space while opening up the testing
prospects in future direct detection experiments. Additionally, unlike in the original SD3M proposal,
coannilitations do not play a central role in setting the relic abundance in our model. Regarding
indirect detection, this framework does not provide clear prospective signatures since the annihilation
cross-section is p-wave suppressed.
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Scotogenic model with a gauged Abelian symmetry

Field SU(2)L U(1)Y U(1)X
uRi 1 2/3 u

dRi 1 �1/3 d

(Qi)
† 2 �1/6 Q

(Li)
† 2 1/2 L

eRi 1 �1 e

(L0
L
)† 2 1/2 �x

0

e
0
R

1 �1 x
0

L
00
R

2 �1/2 x
00

(e00
L
)† 1 1 �x

00

�↵ 1 0 z↵

Table 1: Fermion content and its quantum numbers. i = 1, 2, 3, ↵ = 1, 2, . . . , N 0.

the experimental constraints, including the proper �Ne↵. Finally, we present our conclusions in
Section 5.

2 Local U(1)X extension of the standard model

We extend the standard model (SM) by adding a general local U(1)X symmetry and a set of new
chiral fields with X-charges as displayed in Table 1, including N

0 SM-singlet chiral fermions, two
iso-singlet charged fermions e0

R
and e

00
L
, and two SU(2)L doublets with components L0

L
=

�
N

0
L

e
0
L

�T

and L
00
R
=

�
N

00
R

e
00
R

�T
. It is worth noting that, without this minimal set of extra chiral fields with

non-zero hypercharge, it is not possible to have zero lepton (quark) X-charges, as required by a
gauged baryon (lepton) number symmetry [5, 7].

There are several conditions that we need to impose on the charge assignment to achieve the
goals of our model:

1. The model must be anomaly free.

2. At least two of the new SM-singlet chiral fields �↵ must correspond to the right-handed
neutrinos associated with light Dirac neutrino masses. We require that these fields have the
same U(1)X charge.

3. Two SM-singlet chiral fields, say �R and �L, can form the Dirac-DM particle that also
participates in the baryon asymmetry generation. These fields couple to a heavy scalar field
� that spontaneously breaks U(1)X and provides mass to the chiral fields. For simplicity,
we assume that the same scalar field provides the mass for the heavy doublets L

0
L
and L

00
R

(and the heavy iso-singlets e0
R
and e

00
L
). These requirements impose the following conditions

on the X-charges

q� =q�R + q(�L)† , (2a)

q� =q(L0
L)

† + qL00
R
= �

h
qe0R

+ q(e00L)
†

i
= �x

0 + x
00
. (2b)

3

L ⌫R

�
0�
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L
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L e
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Figure 1: Diagram for the Dirac-dark Zee model.

light Dirac-neutrino mass matrix, we require the addition of two sets of two iso-singlet charged
scalars ��

↵
and �

0�
↵
, (↵ = 1, 2) with X-charges � and �

0 respectively. Then, we have

� =L+ x
0
, �

0 =⌫ + x
0
, q� =� � �

0
, (13)

and we can always recover the conditions in Eq. (12) for � = 1. In this way, this topology can be
realized for all the � = 1 solutions in [8]. The same happens for any other topology that realizes
the e↵ective Dirac-neutrino mass operator since the addition of the scalars does not a↵ect the
anomaly cancellation. In fact, once the anomaly conditions are satisfied, any extra fields that are
required to allow for the mass operator must be either scalar of vector-like fermions.

3 An explicit implementation for U(1)B

In this work, we consider a specific solution to the conditions from Section 2 in order to realize
neutrino masses, dark matter, and baryogenesis. We analyze the integer set (5, 5,�2,�3, 1,�6)
in Ref. [8] (ordered according to Eq. (8)), which is a solution to Eq. (7) and allows the e↵ective
Dirac-neutrino mass operator at d = 5. We can reinterpret this as a local U(1)B with Q = 5/9,
x
0 = �1, x00 = �6 and the particle content shown in Table 2, up to a global factor of �3/5. This

factor has been included in the column U(1)B of Table 2.
With the new U(1)Y charged chiral fermions and the two sets of charged iso-singlet scalars

(�+
↵
, �0�

↵
), it is now possible to realize the scotogenic Dirac-Dark Zee topology as displayed in the

diagram in Fig. 1. The new charge assignment allows for the following terms in the Lagrangian

�L � ha,� (�L)
†
�R�

⇤ + hb,� (e0
R
)† e00

L
�⇤ + hc,�(L

0
L
)†L00

R
�⇤ + h

i↵

d
L
0
L
Li�

+
↵

+ ha,S (�L)
†
�RS

⇤ + hb,S (e
0
R
)† e00

L
S
⇤ + hc,S(L

0
L
)†L00

R
S
⇤

+ h
↵�

e
⌫R,↵e

0
R
�
0+
�
+ hgH

† (e0
R
)† L0

L
+ hh(L

00
R
)†e00

L
H + h.c. , (14)

where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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the experimental constraints, including the proper �Ne↵. Finally, we present our conclusions in
Section 5.

2 Local U(1)X extension of the standard model

We extend the standard model (SM) by adding a general local U(1)X symmetry and a set of new
chiral fields with X-charges as displayed in Table 1, including N

0 SM-singlet chiral fermions, two
iso-singlet charged fermions e0
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and e
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=
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. It is worth noting that, without this minimal set of extra chiral fields with

non-zero hypercharge, it is not possible to have zero lepton (quark) X-charges, as required by a
gauged baryon (lepton) number symmetry [5, 7].

There are several conditions that we need to impose on the charge assignment to achieve the
goals of our model:

1. The model must be anomaly free.

2. At least two of the new SM-singlet chiral fields �↵ must correspond to the right-handed
neutrinos associated with light Dirac neutrino masses. We require that these fields have the
same U(1)X charge.

3. Two SM-singlet chiral fields, say �R and �L, can form the Dirac-DM particle that also
participates in the baryon asymmetry generation. These fields couple to a heavy scalar field
� that spontaneously breaks U(1)X and provides mass to the chiral fields. For simplicity,
we assume that the same scalar field provides the mass for the heavy doublets L
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and L
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(and the heavy iso-singlets e0
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on the X-charges

q� =q�R + q(�L)† , (2a)

q� =q(L0
L)

† + qL00
R
= �

h
qe0R

+ q(e00L)
†

i
= �x

0 + x
00
. (2b)

3

At least two of the singlets must correspond to right-handed neutrinos 
associated with light Dirac neutrino masses  

L ⌫R

�
0�

��
�
↵

�

H

L
0
L e

0
R

Figure 1: Diagram for the Dirac-dark Zee model.

light Dirac-neutrino mass matrix, we require the addition of two sets of two iso-singlet charged
scalars ��

↵
and �

0�
↵
, (↵ = 1, 2) with X-charges � and �

0 respectively. Then, we have
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, �
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, q� =� � �
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and we can always recover the conditions in Eq. (12) for � = 1. In this way, this topology can be
realized for all the � = 1 solutions in [8]. The same happens for any other topology that realizes
the e↵ective Dirac-neutrino mass operator since the addition of the scalars does not a↵ect the
anomaly cancellation. In fact, once the anomaly conditions are satisfied, any extra fields that are
required to allow for the mass operator must be either scalar of vector-like fermions.

3 An explicit implementation for U(1)B

In this work, we consider a specific solution to the conditions from Section 2 in order to realize
neutrino masses, dark matter, and baryogenesis. We analyze the integer set (5, 5,�2,�3, 1,�6)
in Ref. [8] (ordered according to Eq. (8)), which is a solution to Eq. (7) and allows the e↵ective
Dirac-neutrino mass operator at d = 5. We can reinterpret this as a local U(1)B with Q = 5/9,
x
0 = �1, x00 = �6 and the particle content shown in Table 2, up to a global factor of �3/5. This

factor has been included in the column U(1)B of Table 2.
With the new U(1)Y charged chiral fermions and the two sets of charged iso-singlet scalars

(�+
↵
, �0�

↵
), it is now possible to realize the scotogenic Dirac-Dark Zee topology as displayed in the

diagram in Fig. 1. The new charge assignment allows for the following terms in the Lagrangian
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where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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the experimental constraints, including the proper �Ne↵. Finally, we present our conclusions in
Section 5.

2 Local U(1)X extension of the standard model

We extend the standard model (SM) by adding a general local U(1)X symmetry and a set of new
chiral fields with X-charges as displayed in Table 1, including N

0 SM-singlet chiral fermions, two
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and e
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. It is worth noting that, without this minimal set of extra chiral fields with

non-zero hypercharge, it is not possible to have zero lepton (quark) X-charges, as required by a
gauged baryon (lepton) number symmetry [5, 7].

There are several conditions that we need to impose on the charge assignment to achieve the
goals of our model:

1. The model must be anomaly free.

2. At least two of the new SM-singlet chiral fields �↵ must correspond to the right-handed
neutrinos associated with light Dirac neutrino masses. We require that these fields have the
same U(1)X charge.

3. Two SM-singlet chiral fields, say �R and �L, can form the Dirac-DM particle that also
participates in the baryon asymmetry generation. These fields couple to a heavy scalar field
� that spontaneously breaks U(1)X and provides mass to the chiral fields. For simplicity,
we assume that the same scalar field provides the mass for the heavy doublets L
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light Dirac-neutrino mass matrix, we require the addition of two sets of two iso-singlet charged
scalars ��
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and �
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, (↵ = 1, 2) with X-charges � and �

0 respectively. Then, we have
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and we can always recover the conditions in Eq. (12) for � = 1. In this way, this topology can be
realized for all the � = 1 solutions in [8]. The same happens for any other topology that realizes
the e↵ective Dirac-neutrino mass operator since the addition of the scalars does not a↵ect the
anomaly cancellation. In fact, once the anomaly conditions are satisfied, any extra fields that are
required to allow for the mass operator must be either scalar of vector-like fermions.

3 An explicit implementation for U(1)B

In this work, we consider a specific solution to the conditions from Section 2 in order to realize
neutrino masses, dark matter, and baryogenesis. We analyze the integer set (5, 5,�2,�3, 1,�6)
in Ref. [8] (ordered according to Eq. (8)), which is a solution to Eq. (7) and allows the e↵ective
Dirac-neutrino mass operator at d = 5. We can reinterpret this as a local U(1)B with Q = 5/9,
x
0 = �1, x00 = �6 and the particle content shown in Table 2, up to a global factor of �3/5. This

factor has been included in the column U(1)B of Table 2.
With the new U(1)Y charged chiral fermions and the two sets of charged iso-singlet scalars

(�+
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), it is now possible to realize the scotogenic Dirac-Dark Zee topology as displayed in the
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where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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Field SU(2)L U(1)Y U(1)X
uRi 1 2/3 u

dRi 1 �1/3 d

(Qi)
† 2 �1/6 Q

(Li)
† 2 1/2 L

eRi 1 �1 e

(L0
L
)† 2 1/2 �x

0

e
0
R

1 �1 x
0

L
00
R

2 �1/2 x
00

(e00
L
)† 1 1 �x

00

�↵ 1 0 z↵

Table 1: Fermion content and its quantum numbers. i = 1, 2, 3, ↵ = 1, 2, . . . , N 0.

the experimental constraints, including the proper �Ne↵. Finally, we present our conclusions in
Section 5.
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=
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Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
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equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
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1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

Pheno 2023Walter Tangarife (Loyola Chicago)

Restrepo, Rivera, Tangarife PRD (2022)

See also Restrepo & Suarez, arXiv:2112.09529

Costa, Dobrescu, Fox, PRL (2019)



Scotogenic model with a gauged Abelian symmetry
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Figure 1: Diagram for the Dirac-dark Zee model.

light Dirac-neutrino mass matrix, we require the addition of two sets of two iso-singlet charged
scalars ��

↵
and �

0�
↵
, (↵ = 1, 2) with X-charges � and �

0 respectively. Then, we have

� =L+ x
0
, �

0 =⌫ + x
0
, q� =� � �

0
, (13)

and we can always recover the conditions in Eq. (12) for � = 1. In this way, this topology can be
realized for all the � = 1 solutions in [8]. The same happens for any other topology that realizes
the e↵ective Dirac-neutrino mass operator since the addition of the scalars does not a↵ect the
anomaly cancellation. In fact, once the anomaly conditions are satisfied, any extra fields that are
required to allow for the mass operator must be either scalar of vector-like fermions.

3 An explicit implementation for U(1)B
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Dirac-neutrino mass operator at d = 5. We can reinterpret this as a local U(1)B with Q = 5/9,
x
0 = �1, x00 = �6 and the particle content shown in Table 2, up to a global factor of �3/5. This

factor has been included in the column U(1)B of Table 2.
With the new U(1)Y charged chiral fermions and the two sets of charged iso-singlet scalars

(�+
↵
, �0�

↵
), it is now possible to realize the scotogenic Dirac-Dark Zee topology as displayed in the

diagram in Fig. 1. The new charge assignment allows for the following terms in the Lagrangian
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where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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Field SU(2)L U(1)Y U(1)X
uRi 1 2/3 u

dRi 1 �1/3 d
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Table 1: Fermion content and its quantum numbers. i = 1, 2, 3, ↵ = 1, 2, . . . , N 0.

the experimental constraints, including the proper �Ne↵. Finally, we present our conclusions in
Section 5.

2 Local U(1)X extension of the standard model
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non-zero hypercharge, it is not possible to have zero lepton (quark) X-charges, as required by a
gauged baryon (lepton) number symmetry [5, 7].

There are several conditions that we need to impose on the charge assignment to achieve the
goals of our model:
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we assume that the same scalar field provides the mass for the heavy doublets L
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Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.
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It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
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4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

The anomaly cancellation conditions on [SU(3)c]
2 U(1)X , [SU(2)L]

2 U(1)X , [U(1)Y ]
2 U(1)X , al-

low us to express three of the X-charges in terms of the others

u =� e�
2

3
L�

1

9
(x0

� x
00) , d =e+

4

3
L�

1

9
(x0

� x
00) , Q =�

1

3
L+

1

9
(x0

� x
00) , (3)

while the [U(1)X ]
2 U(1)Y anomaly condition reduces to

(e+ L)(x0
� x

00) = 0 . (4)

Note that the vector-like solution x
00 = x

0 leads to the same solution as the SM extension
with only extra singlet chiral fermions with no hypercharge in Ref. [14]. This kind of solution is
incompatible with a gauged baryon or lepton number and will not be considered here. To cancel
out the [U(1)X ]

2 U(1)Y anomaly, we choose instead

e = �L , (5)

so that [4, 15]

Q = �u = �d = �
1

3
L+

1

9
(x0

� x
00) . (6)

Notice that, because of Eqs. (5) and (6), the X-charge of the Higgs must always be zero in these
scenarios.

The gravitational anomaly, [SO(1, 3)]2 U(1)Y , and the cubic anomaly, [U(1)X ]
3, can be written

as the following system of Diophantine equations, respectively,

NX

↵=1

z↵ =0 ,
NX

↵=1

z
3
↵
=0 , (7)

where N = N
0 + 5 and

zN 0+1 =� x
0
, zN 0+2 =x

00
,

zN 0+2+i = L , i = 1, 2, 3 , (8)

It worth noticing that, to our knowledge, it is the first time that the gravitational and cubic anomaly
equations are expressed in the most general way for the gauge baryon or lepton number Abelian
symmetries. This will allows us to use the already known general solutions to the Diophantine
equations (7) for local U(1) symmetries with only extra SM-singlet chiral fermions [16], but assigned
to the new fields. In fact, until now, only specific solutions to the full set of anomaly conditions
for the gauge baryon or lepton number Abelian symmetries have been reported in the literature
so far1.

Notice that any solution of Eqs. (7) can be readily interpreted as gauged baryon number
symmetry, U(1)B, if we do not assign any integer of the solution to L, so that it remains zero.
The simplest solution to have U(1)B is for N 0 = 2 with a massive SM-singlet Dirac fermion. Then,

1The vector-like solution for U(1)L and U(1)B in [4], in the proposed ordering, are respectively (1, 1, 1, q,�q�Ng,
�q, q+Ng,�1,�1,�1) and (q,�Ng�q,�q,Ng+q) with massless neutrinos in the last case. While the chiral U(1)L
solution in [15] is (2, 2, 2,�3, 6,�4,�5,�3, 0, 1, 1, 1).

4

If L = 0 ⟶ U(1)B Pheno 2023Walter Tangarife (Loyola Chicago)

Restrepo, Rivera, Tangarife PRD (2022)

See also Restrepo & Suarez, arXiv:2112.09529

Costa, Dobrescu, Fox, PRL (2019)



Scotogenic model with a gauged U(1)B
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Figure 1: Diagram for the Dirac-dark Zee model.

light Dirac-neutrino mass matrix, we require the addition of two sets of two iso-singlet charged
scalars ��

↵
and �

0�
↵
, (↵ = 1, 2) with X-charges � and �

0 respectively. Then, we have

� =L+ x
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0 =⌫ + x
0
, q� =� � �

0
, (13)

and we can always recover the conditions in Eq. (12) for � = 1. In this way, this topology can be
realized for all the � = 1 solutions in [8]. The same happens for any other topology that realizes
the e↵ective Dirac-neutrino mass operator since the addition of the scalars does not a↵ect the
anomaly cancellation. In fact, once the anomaly conditions are satisfied, any extra fields that are
required to allow for the mass operator must be either scalar of vector-like fermions.

3 An explicit implementation for U(1)B

In this work, we consider a specific solution to the conditions from Section 2 in order to realize
neutrino masses, dark matter, and baryogenesis. We analyze the integer set (5, 5,�2,�3, 1,�6)
in Ref. [8] (ordered according to Eq. (8)), which is a solution to Eq. (7) and allows the e↵ective
Dirac-neutrino mass operator at d = 5. We can reinterpret this as a local U(1)B with Q = 5/9,
x
0 = �1, x00 = �6 and the particle content shown in Table 2, up to a global factor of �3/5. This

factor has been included in the column U(1)B of Table 2.
With the new U(1)Y charged chiral fermions and the two sets of charged iso-singlet scalars

(�+
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, �0�

↵
), it is now possible to realize the scotogenic Dirac-Dark Zee topology as displayed in the

diagram in Fig. 1. The new charge assignment allows for the following terms in the Lagrangian
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where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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Table 2: Fermion (top) and scalar (bottom) content and its quantum numbers, i = 1, 2, 3, ↵ = 1, 2
with proper normalized baryon number charges with a global factor �5/3.

lead to CP violation in the model as in the baryogenesis mechanism studied in Refs. [3, 4]. We will
further explore this mechanism in Sec. 4. Finally, the Lagrangian also contains the scalar potential
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3.1 Symmetry breaking and spectrum

In this model, the scalar � develops a vacuum expectation value (VEV), h�i = v�/
p
2 that

remains constant as the Universe evolves near the EWPT, where the SM Higgs develops its VEV,
hHi = v/
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Dirac-neutrino mass operator at d = 5. We can reinterpret this as a local U(1)B with Q = 5/9,
x
0 = �1, x00 = �6 and the particle content shown in Table 2, up to a global factor of �3/5. This

factor has been included in the column U(1)B of Table 2.
With the new U(1)Y charged chiral fermions and the two sets of charged iso-singlet scalars

(�+
↵
, �0�

↵
), it is now possible to realize the scotogenic Dirac-Dark Zee topology as displayed in the

diagram in Fig. 1. The new charge assignment allows for the following terms in the Lagrangian

�L � ha,� (�L)
†
�R�

⇤ + hb,� (e0
R
)† e00

L
�⇤ + hc,�(L

0
L
)†L00

R
�⇤ + h

i↵

d
L
0
L
Li�

+
↵

+ ha,S (�L)
†
�RS

⇤ + hb,S (e
0
R
)† e00

L
S
⇤ + hc,S(L

0
L
)†L00

R
S
⇤

+ h
↵�

e
⌫R,↵e

0
R
�
0+
�
+ hgH

† (e0
R
)† L0

L
+ hh(L

00
R
)†e00

L
H + h.c. , (14)

where ↵, � = 1, 2 and i = 1, 2, 3. The h’s are Yukawa couplings, which we assume to be real
parameters for the sake of simplicity, except the parameter ha,S which remains complex and will
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Field SU(2)L U(1)Y U(1)B
uRi 1 2/3 u = 1/3
dRi 1 �1/3 d = 1/3
(Qi)

† 2 �1/6 Q = �1/3
(Li)

† 2 1/2 L = 0
eR 1 �1 e = 0
(L0

L
)† 2 1/2 �x

0 = �3/5
e
0
R

1 �1 x
0 = 3/5

L
00
R

2 �1/2 x
00 = 18/5

(e00
L
)† 1 1 �x

00 = �18/5
⌫R,1 1 0 �3
⌫R,2 1 0 �3
�R 1 0 6/5
(�L)

† 1 0 9/5
H 2 1/2 0
S 1 0 3
� 1 0 3
�
�
↵

1 1 3/5
�
0�
↵

1 �1 �12/5

Table 2: Fermion (top) and scalar (bottom) content and its quantum numbers, i = 1, 2, 3, ↵ = 1, 2
with proper normalized baryon number charges with a global factor �5/3.

lead to CP violation in the model as in the baryogenesis mechanism studied in Refs. [3, 4]. We will
further explore this mechanism in Sec. 4. Finally, the Lagrangian also contains the scalar potential

V (H,S,�, �±
↵
, �

0±
↵
) =V (H) + V (S) + V (�) + V (�±

↵
) + V (�0±

↵
)

+
h

↵�

S
S�

+
↵
�
0�
�
+ 

↵�

� ��+
↵
�
0�
�

+ �
0
S� (S⇤�)2 + h.c.

i
, (15)

where

V (�i) =µ
2
�i
�
†
i
�i + ��i

⇣
�
†
i
�i

⌘2

+ ��i�j�
†
i
�i�

†
j
�j +

⇣
��iS��

†
i
�iS

⇤�+ h.c.
⌘
, (16)

with �i = H,S,�, �+
↵
, �

0�
↵
, and i < j .

3.1 Symmetry breaking and spectrum

In this model, the scalar � develops a vacuum expectation value (VEV), h�i = v�/
p
2 that

remains constant as the Universe evolves near the EWPT, where the SM Higgs develops its VEV,
hHi = v/

p
2, with v = 246.2 GeV. At zero temperature, the scalar fields S, �+

↵
, �

0�
↵

do not obtain
a VEV.

At zero temperature, after the electroweak symmetry breaking, the scalars H =
�
G

+
H

0
�T

and � are mixed. In the basis (h0
,�0), the mass mixing matrix is given by

m
2
h
=

✓
�3�Hv

2 + µ
2
H
�

1
2v

2
��H� �vv��H�

�vv��H� �
1
2�H�v

2 + µ
2
� � 3v2���

◆
, (17)
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in addition to fixing L = 0, we can choose z3 = �z1 = �x
0 and z4 = �z2 = x

00 [7]. However, in
this kind of solution, neutrinos are still massless, as in the SM. We are interested here in solutions
where the right-handed neutrinos are also charged under U(1)B or U(1)L

To have a gauge lepton number symmetry U(1)L, however, we require two additional conditions
on the solution of of Eqs. (7): (a) the set must have three repeated integers whose value must be
assigned to L; and, since Eq. (6) can be rewritten as

9Q = �

N
0+5X

↵=N 0+1

z↵ , (9)

(b) the corresponding subset of integers z↵ in (8) must add to zero.
In this way, the previously found solutions for SM-singlet chiral extensions of the SM with

e↵ective Dirac-neutrino masses [8] can be used directly here. There, a SM-singlet scalar � appears
in the e↵ective Dirac-neutrino mass operator [17], in terms of Weyl fermions,

Le↵ = h
↵i

⌫
(⌫R↵)

†
✏ab L

a

i
H

b

✓
�⇤

⇤

◆�

+H.c., with i = 1, 2, 3 , (10)

and � = 1, 2, . . . for dimension-d = 4 + � operators. We only consider solutions with at least two
repeated charges, ⌫, to be assigned to the right-handed neutrinos, ⌫R↵,

�1 ! ⌫R1, · · · ,�N⌫ ! ⌫RN⌫ , 2  N⌫  3 , (11)

and with the scalar � providing mass to all pairs of SM-singlet chiral fields, like the ones in
Eq. (2a). Since all the solutions in [8] have at least one massive SM-singlet Dirac fermion, it is
always possible to reassign it to x

0 and x
00 as in Eq. (2b), so that all the solutions in [8] satisfy

q� =
L� ⌫

�
, |q�| =|� x

0 + x
00
|, |q�| =|�↵ + ��| ↵, � = N⌫ , . . . , N

0
. (12)

Then, we can reinterpret each one of the dark symmetries, U(1)D, in [8] as a gauged baryon
number symmetry, U(1)B2. Note, however, that the integers which solve the two Diophantine
equations (7) in both cases, are now assigned to di↵erent fields. While in the dark symmetry
case the integers of the solutions corresponds to charges of extra SM-singlet chiral fermion fields,
and the SM charges are neutral under the new gauge symmetry; in the gauged baryon number
model, two of the integers need to be assigned to the set of non-zero hypercharge fermion doublets
and iso-singlets, and only the SM-lepton sector is neutral under the new symmetry. This leads to
completely new phenomenology with contributions to Ne↵, flavor observables and direct detection
and collider constraints on Z

0, which will be studied below for one specific solution. On the other
hand, the active symmetry solutions U(1)X in [8], which also require three repeated charges, need
to be checked against the extra conditions from Eq. (2b) and Eq. (9), with Q = 0, before they can
be identified as a gauged lepton number symmetry, U(1)L.

We are interested in the case of a scotogenic scenario where the dark sector participates in the
radiative neutrino mass loop. To realize the e↵ective Dirac-neutrino mass operator with d = 5, we
consider the Dirac-Dark Zee topology as shown in the diagram in Fig. 1. In order to have a rank-2

2The type of solutions with m = 0 in Table 1 of [8].

5

Dirac- neutrino mass mass

Right-handed neutrinos

Dirac DM

Also, in this model, there are two new neutral dark Dirac fermions

N =

✓
N

0
L

N
00
R

◆
, � =

✓
�L

�R

◆
, (26)

such that N will be a heavy fermion and � will be the candidate for the DM particle.
Finally, the mixing matrix for the neutral gauge sector is given by

m
2
Z
=

0

@
1
4g

2
1 v

2
�

1
4g1g2 v

2 0
�

1
4g1g2 v

2 1
4g

2
2 v

2 0
0 0 9g2

B
v
2
�

1

A , (27)

where g1, g2, gB are the U(1)Y , SU(2)L and U(1)B gauge couplings. After diagonalization, the mass
eigenstates are given by three neutral gauge bosons (�, Z, Z 0), where � is the photon field, Z is
the SM gauge boson, and Z

0 is a new gauge boson with a mass mZ0 = 3gBv�.

3.2 Dirac neutrino masses

When the scalar fields H and � acquire VEVs, neutrinos obtain Dirac masses via the five-
dimensional e↵ective operator in Eq. (10), whose one-loop realization is shown in Fig. 1. The
diagram yields the mass matrix

Mi↵ =
2X

�=1

h
i�

d
⇥ ⇤� ⇥ h

↵�

e
, (28)

where ⇤� is the loop factor given by

⇤� =
1

16⇡2

4X

j=1

Z
+
j,↵

Z
+
j,↵+2

2X

n=1

V
L

n1 U
R

n1 me0n ⇥

2

664
m

2
e0n
ln(m2

e0n
)�m

2
H

+
j
ln(m2

H
+
j
)

✓
m

2
e0n

�m
2
H

+
j

◆

3

775 , (29)

where Z
+
i,j
, V L

ij
and U

R

ij
are the rotation matrices defined in Eqs. (22) and (25). me0n , mH

+
j
are the

masses of the dark electrons and the charged scalars that are rotating in the loop, respectively.
Neutrino oscillation data at 3� [18] allow us to set the values of the Yukawa couplings in the

Eq. (14). In the basis where ⌫
↵

R
are mass eigenstates, the mass matrix (28) can be written as [19]

Mik = (UPMNS)ik (m⌫)k , (30)

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata matrix [20] and (m⌫)k are the neutrino
mass eigenvalues. Comparing the Eqs. (28) and (30), we have 10 unknown parameters, h↵�

e
, h

i↵

d
,

and 9 equations. We can further simplify our analysis by imposing normal ordering for neutrino
masses, m⌫1 < m⌫2 < m⌫3

3, and leave the couplings h
↵�

e
as free parameters. We obtain the

3Alternatively, we could choose inverted ordering for the masses, m⌫3 < m⌫1 < m⌫2, and the analysis would
proceed the same way.
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Scotogenic model with a gauged U(1)B

Figure 3: The SI cross-section (blue dots) and the current experimental constraints from PandaX-
4T [37], XENON1T [38], and prospects from LZ [39] and DARWIN [40]. We also show the Neutrino
Coherent Scattering (NCS) [42–45].

4 Dark CP violation and electroweak baryogenesis

The third goal of this work is to generate the baryonic asymmetry in the Universe. The standard
lore lists the conditions for a theory of baryogenesis as the Sakharov conditions [47]: Violation of
charge C, charge-parity CP , and there must exist processes that occur after exiting thermal equi-
librium and violate baryon number, B. To satisfy these conditions, we will adapt the mechanism
presented in [3, 4] in which CP violation occurs in the dark sector and is mediated to the SM sector
by the new Z

0 gauge boson. Baryogenesis results from the dynamics of the same hidden-sector
fields that are also responsible for dark matter and neutrino masses. The goal of this section,
rather than presenting a new mechanism for baryogenesis, is to show that models of scotogenic
Dirac neutrino masses and dark matter can easily accommodate electroweak baryogenesis in the
same fashion as [3, 4]4.

In the scalar sector of the model, the key fields in the mechanism are the scalars H = h/
p
2

and s = |S|. A strong first-order phase transition is incorporated into this scenario through the
evolution of the VEVs of these two fields, whose potential can be rewritten as [11]5

V (h, s) =
�H

4

�
h
2
� v

2
�2

+
�S

4

�
s
2
� w

2
�2

+
�SH

2
h
2
s
2
, (34)

4Ref. [11] presented another mechanism where CP violation occurs in the hidden sector and there is a Yukawa
coupling between the dark and SM fermions.

5We assume that the field �, which has a much larger VEV is integrated out and does not play any role in the
baryogenesis mechanism beyond providing mass terms in the Lagrangian.
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Field SU(2)L U(1)Y U(1)B
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(Qi)

† 2 �1/6 Q = �1/3
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Table 2: Fermion (top) and scalar (bottom) content and its quantum numbers, i = 1, 2, 3, ↵ = 1, 2
with proper normalized baryon number charges with a global factor �5/3.

lead to CP violation in the model as in the baryogenesis mechanism studied in Refs. [3, 4]. We will
further explore this mechanism in Sec. 4. Finally, the Lagrangian also contains the scalar potential

V (H,S,�, �±
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, �
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with �i = H,S,�, �+
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, �
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↵
, and i < j .

3.1 Symmetry breaking and spectrum

In this model, the scalar � develops a vacuum expectation value (VEV), h�i = v�/
p
2 that

remains constant as the Universe evolves near the EWPT, where the SM Higgs develops its VEV,
hHi = v/

p
2, with v = 246.2 GeV. At zero temperature, the scalar fields S, �+

↵
, �

0�
↵

do not obtain
a VEV.

At zero temperature, after the electroweak symmetry breaking, the scalars H =
�
G
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H

0
�T

and � are mixed. In the basis (h0
,�0), the mass mixing matrix is given by
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Figure 3: The SI cross-section (blue dots) and the current experimental constraints from PandaX-
4T [37], XENON1T [38], and prospects from LZ [39] and DARWIN [40]. We also show the Neutrino
Coherent Scattering (NCS) [42–45].

4 Dark CP violation and electroweak baryogenesis

The third goal of this work is to generate the baryonic asymmetry in the Universe. The standard
lore lists the conditions for a theory of baryogenesis as the Sakharov conditions [47]: Violation of
charge C, charge-parity CP , and there must exist processes that occur after exiting thermal equi-
librium and violate baryon number, B. To satisfy these conditions, we will adapt the mechanism
presented in [3, 4] in which CP violation occurs in the dark sector and is mediated to the SM sector
by the new Z

0 gauge boson. Baryogenesis results from the dynamics of the same hidden-sector
fields that are also responsible for dark matter and neutrino masses. The goal of this section,
rather than presenting a new mechanism for baryogenesis, is to show that models of scotogenic
Dirac neutrino masses and dark matter can easily accommodate electroweak baryogenesis in the
same fashion as [3, 4]4.

In the scalar sector of the model, the key fields in the mechanism are the scalars H = h/
p
2

and s = |S|. A strong first-order phase transition is incorporated into this scenario through the
evolution of the VEVs of these two fields, whose potential can be rewritten as [11]5

V (h, s) =
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, (34)

4Ref. [11] presented another mechanism where CP violation occurs in the hidden sector and there is a Yukawa
coupling between the dark and SM fermions.

5We assume that the field �, which has a much larger VEV is integrated out and does not play any role in the
baryogenesis mechanism beyond providing mass terms in the Lagrangian.
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rather than presenting a new mechanism for baryogenesis, is to show that models of scotogenic
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same fashion as [3, 4]4.

In the scalar sector of the model, the key fields in the mechanism are the scalars H = h/
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At the first-order phase transition, bubbles 
nucleate and expand through the primordial 
plasma, causing perturbations on the particle 
and antiparticle densities.  

where v and w are the VEVs for h and s, respectively, at the minimum of the potential. We require
two stable minima, (0, w0) and (v, w), for this potential and a tree-level barrier between them.
Furthermore, the global minimum at zero temperature must be at vEW ⌘ v(0) = 246GeV and
w(0) = 0. Following the potential analysis in [48], we find that these conditions can be satisfied if

�SH > 0, �H�S �
1

4
�
2
SH

< �
�SHm

2
s

2v2
. (35)

At high temperatures, � breaks the U(1)B symmetry and the global minimum of the potential
is given by (0, w0(T )) and the electroweak symmetry is exact. As the temperature decreases,
the electroweak minimum forms with (v(T ), w(T )). At the critical temperature Tc, both minima
are degenerate. For lower temperatures, T < Tc, the electroweak minimum becomes the global
minimum. The finite-temperature e↵ective potential is given by

VT (h, s) =
�Hv

4
c

4

✓
h
2

v2
c

+
s
2

w2
c

� 1

◆2

+
�Hv

2
c

m2
s,c
w

4
0,c

h
2
s
2 + (T 2

� T
2
c
)(chh

2 + css
2) , (36)

where the subscript c denotes the quantity at T = Tc. The coe�cients cs and ch correspond to
one-loop thermal corrections and are given by

ch =
1

48

�
9g22 + 3g21 + 12y2

t
+ 24�H + �SH

�
, cs =

1

12
(3�S + 2�HS) . (37)

An additional condition, to ensure that the global minimum for this potential is the broken one
when T = 0, is

ch

cs
>

r
�H

�S

. (38)

Using the thin-wall approximation [49], the nucleation temperature, Tn, is defined by the
condition [11]

exp (�S3/Tn) =
3

4⇡

✓
H(Tn)

Tn

◆4 ✓2⇡ Tn

S3

◆ 3
2

, (39)

where S3 is the Euclidean action of the bubble and H(T ) is the Hubble rate. In this approximation,
to describe the bubble wall profile, we use the ansatz in which the space dependence of the fields
is given by

h(z) =
1

2
v(Tn) (1� tanh (z/Lw)) , s(z) =

1

2
s0 (1 + tanh (z/Lw)) , (40)

where z is the direction normal to the wall and Lw is the wall width and s0 ⌘ w0(Tn). At the
first-order phase transition, bubbles nucleate and expand through the primordial plasma, causing
perturbations on the particle and antiparticle densities. For a given set of parameters and critical
temperature Tc, we obtain Tn by solving numerically Eq. (39). In Fig. 4, we show the dependence
of Tn on the coupling �S for di↵erent values of �SH and two choices of Tc. As we will explain
below, in our model, the nucleation temperature does not turn out much smaller than the critical
temperature. Hence, the relevant regions in these curves are those on the lower values of �S, to
the right of the inverted peak.
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the primordial plasma, causing perturbations on the particle and 
antiparticle densities.  

P and CP violation is incorporated by adding a term  

Figure 4: Left: Tn dependence on �S for di↵erent choices of �SH . Solid lines correspond to
Tc = 130GeV and dashed lines to Tc = 110GeV. The range of the lines is bounded by Eqs. (35)
and (38). Right: The solid lines show the T -dependence of S3(T )/T in the thin-wall approximation
for di↵erent values of �S while keeping �SH fixed. The dashed lines show the value of S3(Tn)/Tn

for each of the choices of �S. Notice that the green and orange dashed lines overlap.

The velocity and width of the wall can be calculated following the algorithm presented in
[50–52], where the ansatz (40) is not used. Instead, starting from initial guesses for vw and
Lw, small iterative variations are made until the equations of motion for the bubble profile are
successfully solved. This is a computationally and numerically costly process. However, in the
analysis presented in [51], the calculation of the wall velocity for a scalar potential like ours
showed that there is a correlation between the wall velocity and the supercooling parameter r ⌘

v(Tn)Tc/vcTn. As long as r remains relatively close to the unity, r . 1.15, the models lead to
strong phase transitions with subsonic velocities, vw < 1/

p
3. In this work, we will adopt this

condition and vary the wall velocity in the range 0.1 . vw . 1/
p
3. On the other hand, the wall

thickness can be approximated by [11, 53]

Lw '

✓
2.7(v2

c
+ w

2
c
)

v2
c
(�SHw

2
c
� 2�Hv

2
c
)

✓
1 +

�SHw
2
c
� 2�Hv

2
c

4�Hv
2
c

◆◆1/2

. (41)

P and CP violation is incorporated by adding a term 6

�V (S,�) = �̃�S�
⇤2
S
2
, (42)

which is invariant under U(1)B but generates a term �V ⇠ h�i2S2 after � acquires a VEV. This
term in the potential is minimized by setting the phase of S equal to ⇡/2. The chiral fields, �L and
�R, couple to both scalar fields � and S. After the spontaneous breaking of U(1)B, those chiral
fields acquire an e↵ective mass

M� = m� + �e
i✓
s , (43)

where m� = ha,�h�i and we have parametrized the Yukawa coupling ha,S = �e
i✓�i⇡/2. The

parameters m� and �̃�S are taken to be real, which is possible due to the freedom to redefine the

6In the same spirit of [4], we could add other terms with di↵erent powers of S, S⇤ or �, however, we keep only
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Figure 4: Left: Tn dependence on �S for di↵erent choices of �SH . Solid lines correspond to
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After  acquires a vacuum,Φ

This generates an asymmetry in the interior of the bubble,

fields. However, we cannot eliminate the complex phase in the second term. This phase violates
CP and will lead to opposite signs in the perturbations of particles and antiparticles, resulting in a
net asymmetry in the interior of the bubble, which is not washed out if the condition v(Tn)/Tn > 1
is satisfied [11].

The evolution of the particle and anti-particle distribution functions is obtained from the Boltz-
mann equations, which are recast as the di↵usion equation for the re-scaled chemical potential,
⇠i(z) ⌘ µi(z)/T = 6 (ni � ni) /T 3,

�DL⇠
00
�L

� vw⇠
0
�L

+ �L(⇠�L � ⇠�R) = S��CP , (44)

where DL is the di↵usion constant for �L, which is related to the scattering rate �L by DL =
hv

2
pz
i/3�L. Here, h i means thermal average and z denotes the normal direction to the wall. S��CP

is CP -violating source that results from the variation of ✓ [54],
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where vw is the wall’s velocity and
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⇣
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E1(x) is the error function and K2(x) is the modified Bessel function of the second kind.
The novelty of this mechanism, as presented by the authors of [3, 4], is that the chiral particles,

for which the asymmetry is initially generated, do not couple to the SU(2)L current, but instead
give rise to a non-zero U(1)B charge density in the proximity of the wall. This results in a Z

0

background that couples to the SM fields with U(1)B charge,

hZ
0
0i =

gB (q�L � q�R)T
3
n

6MZ0

Z 1

�1
d z0 ⇠�L(z

0) e�MZ0 |z�z
0|
, (47)

where ⇠�L is given by the solution to Eq. (45), which is given by [3, 4]

⇠�L(z) =

Z 1

�1
d z1G(z � z1)S��CP , (48)

where G(z) is thee Green’s function
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The Z
0 background generates a chemical potential for the SM quarks 7,

µQ(z) = µdR,uR(z) = 3⇥
1

3
⇥ gBhZ

0
0(z)i, (50)

7At T = Tc, the heavy fields L0
L and L00

R are already thermally decoupled and the U(1)B current in the plasma
is anomalous with respect to SU(2)L. This allows the generation of the non-zero chemical potential [4].
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Dark CP violation and electroweak baryogenesis

The blue points are the models that fulfill the relic abundance of DM and the 
neutrino masses. The black points are not excluded by direct detection of DM and 
give the observed baryon asymmetry at the Universe. The green-shaded region is 
in tension with the measured number of relativistic degrees of freedom 

Figure 5: The blue points are the models shown in Fig. 3 that fulfill the relic abundance of DM and
the neutrino masses. The black points are those that are not excluded by direct detection of DM
and give the observed baryon asymmetry at the Universe. The green-shaded region is in tension
with the measured number of relativistic degrees of freedom [56]. The other shaded areas show
the exclusions coming from meson decays [57] (yellow), the hadronic widths of ⌥ and J/ (purple
and orange), LHC dijet searches [58] (red), and from non-detection of the anomaly-cancelling
fermions [59] (gray).

which sources a thermal-equilibrium asymmetry in the quarks [4], �n
EQ
Q

(z) ⇠ T
2
n
µQ(z).

Finally, the baryon-number asymmetry is then given by

nB =
�sph

vw

Z 1

0

d z nEQ
Q

(z) exp

✓
�
�sph

vw
z

◆
, (51)

where �sph is the sphaleron rate, �sph ' 120↵2
W
Tn. The baryon-to-photon-number ratio is then

obtained by

⌘B =
nB

s(Tn)
, s(T ) ⌘

2⇡2

45
g⇤S(T )T

3
, (52)

where g⇤S(T ) is the e↵ective number of relativistic degrees of freedom.
Our goal is to find what regions of the parameter space yield a baryon-number asymmetry

approximately equal to the measured value [55],

0.82⇥ 10�10
< ⌘B < 0.92⇥ 10�10

. (53)

We computed the baryon asymmetry for the U(1)B model presented in Sec. 3 for those points
in the parameter space that are consistent with neutrino masses and that produce the expected
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Conclusions

We have presented a viable framework for small neutrino masses and Dirac dark 
matter, in which all new fields play an important role in solving both problems. 
Furthermore, these fields are also responsible for baryogenesis in the case of a 
gauged baryon number.  

The gauging of baryon number eliminates the necessity of extra discrete 
symmetries to ensure the stability of DM and the absence of Majorana neutrino 
masses. In that model, the baryon asymmetry is generated in the hidden sector 
and is communicated to the visible sector via a non-zero background of the new 
vector boson. 
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