New Horizons in the Holographic Conformal Phase Transition

C. Eröncel, J. Hubisz, S. J. Lee, G. Rigo, B. Sambasivam

Phenomenology Symposium 2023, University of Pittsburgh

Elevator pitch

We have created an out of equilibrium dynamical cosmological solution to the stabilized holographic dilaton and demonstrated a large class of initial conditions that lead to prompt completion of the conformal phase transition without sacrificing perturbativity.

Introduction

RS-I (T = 0)

- Geometric solution to hierarchy problem
- Dual to spontaneously broken CFT on the boundary
- IR scale: $f = ke^{-kR}$
- Stabilizing mechanism to avoid fine-tuning of both brane tensions
- Goldberger-Wise mechanism: $\phi(y)$ source of CFT breaking, generates $V_{\rm eff}(R)$ minimized at correct R.
- Brane tensions now dynamically varying quantities
- Remaining fine tuning sets 4D CC

$$ds^{2} = e^{-2A(y)}(dt^{2} - d\vec{x}^{2}) - dy^{2}$$

Introduction

RS $(T \gg f)$ and the phase transition

- Dual to unbroken CFT at finite T
- PT to RS-I phase strongly first order
- CFT in eqlm with dark radiation plasma
- Bubble nucleation does not finish

$$\frac{\Gamma}{V} \sim e^{-S_b} \propto e^{-\frac{1}{\kappa^2}}$$

- Universe stuck in eternal inflation
- PT important to understand

Dynamical Cosmology

$$ds^{2} = n^{2}(y, t)dt^{2} - a^{2}(y, t)d\vec{x}^{2} - dy^{2}$$

Pure gravity in bulk

. Tensions on brane
$$T_{0,1}=\pm\frac{6k}{\kappa^2}(1\pm\delta_{0,1})$$

CFT language:

 $\delta_0 \equiv$ CC that gaps CFT

 $\delta_1 \equiv {\rm dimensionless\ dilaton\ quartic}$

$$\frac{1}{k^2}\bar{H}^2 = \frac{4\lambda}{\bar{a}^4} + \delta_0(2 + \delta_0)$$

Unstabilized Cosmology ($\delta_0 > 0$)

Unstablized Cosmology ($\delta_0 < 0$)

Stabilized Cosmology

- Typically difficult because $\phi(y, t)$.
- Good approximation: $\phi(y, R(t))$
- Yields slowly rolling $\tilde{\delta}_{0,1}(R)$ with $\tilde{\delta}_{0,1}(\bar{R})=0$
- . UV observer: $\frac{1}{k^2}\bar{H}^2 = \frac{4\lambda}{\bar{a}^4} + \tilde{\delta_0}(2+\tilde{\delta_0})$
- . Brane EoM: $\ddot{R} + 3 \hat{H} \dot{R} + \frac{\partial V_{\text{eff}}}{\partial R} = 0$

Stabilized Cosmology picture

Fate of the Universe

Where does the cosmology put the IR brane?

- Phenomenological parameters need $\gamma \sim \mathcal{O}(10^4)$ for IR brane at early times to make it to the meta-stable minimum
- Requires huge disparity in partition of energy at early times
- For more equitable partitions, $\gamma \sim \mathcal{O}(1)$, and the universe robustly ends up at the global minimum without a strongly first order phase transition, well within the comfort of perturbativity

Thank you

email: <u>bsambasi@syr.edu</u>

Initial Conditions

- Say early dynamics didn't discriminate between dofs
- Equipartition of energies:
- hodilaton $\sim \frac{1}{N^2} \rho_R$

Late-time scalar solutions

$$\ddot{R} + 3\dot{H}\dot{R} + \frac{\partial V_{\text{eff}}}{\partial R} = 0$$

Late-time limit of $V_{
m eff}$

Scalar solution

