What Can Generalized Symmetries Do For You?

Seth Koren

University of Chicago 20-23 -> University of Notre Dame 23-26

Based on

2204.01741, 2204.01750

2211.07639 with Clay Córdova, Sungwoo Hong, Kantaro Ohmori

2212.13193 with Clay Córdova

Familiar global symmetries acting on local operators $\psi(x) \to e^{i\alpha Q} \psi(x)$

are '0-form' symmetries

Familiar global symmetries acting on local operators $\psi(x) \rightarrow e^{i\alpha Q} \psi(x)$

are '0-form' symmetries

O-form symmetry charged local operators e.g. particles

1-form line operators e.g. Wilson line

2-form surface operators

e.g. cosmic string

3-form volume operators e.g. domain wall

Familiar global symmetries acting on local operators $\psi(x) \rightarrow e^{i\alpha Q}\psi(x)$

are '0-form' symmetries

O-form symmetry charged local operators e.g. particles

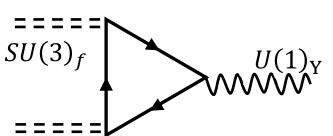
rs line operators ticles e.g. Wilson line

1-form

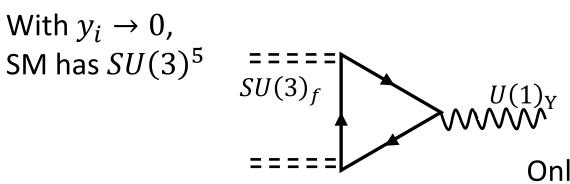
2-form surface operators

3-form


3-form volume operators e.g. domain wall

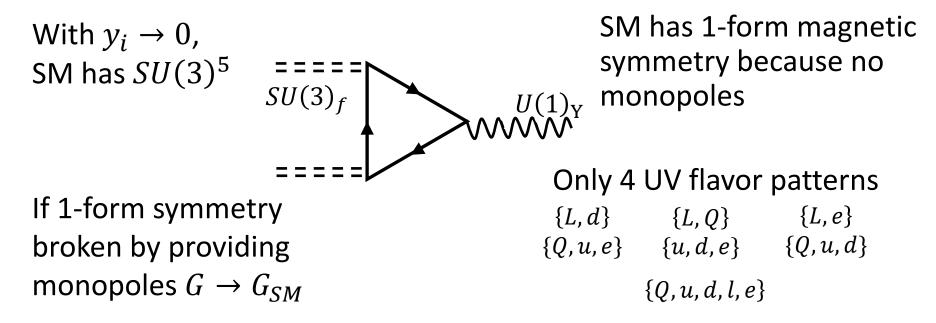

Broken by local operators in Lagrangian E.g. $\delta \mathcal{L}(x) = m_N NN$

Breaking requires modification of dof!


e.g. cosmic string

What sorts of things do we want to do that this could help us with?

SM has 1-form magnetic symmetry because no monopoles

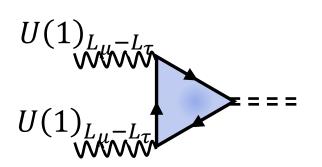


If 1-form symmetry broken by providing monopoles $G \rightarrow G_{SM}$

SM has 1-form magnetic symmetry because no monopoles

Only 4 UV flavor patterns

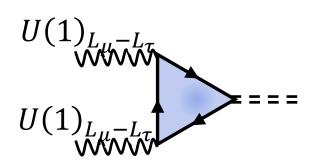
$$\{L,d\}$$
 $\{L,Q\}$ $\{L,e\}$
 $\{Q,u,e\}$ $\{u,d,e\}$ $\{Q,u,d\}$
 $\{Q,u,d,l,e\}$


Actual SM has $y \neq 0$ so 0-form flavor symmetries approximate

y is a spurion for the two-group structure

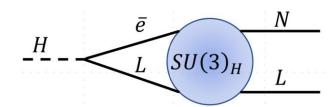
How? Controls the mass of new dof!

How can one generally understand this higher spurion analysis from the bottom up? What does this have to say about gauge-flavor unification?

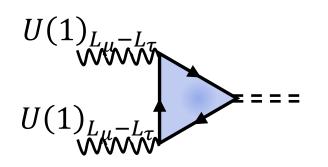

Another interplay of the magnetic 1-form symmetry with the 0form symmetries

Noninvertible symmetries (among other uses) classify when instanton effects in a UV theory could generate small violation of some symmetry

$$\int F\tilde{F} \sim \int E \cdot B \neq 0$$


Another interplay of the magnetic 1-form symmetry with the 0form symmetries

Noninvertible symmetries (among other uses) classify when instanton effects in a UV theory could generate small violation of some symmetry


$$\int F\tilde{F} \sim \int E \cdot B \neq 0$$

$$U(1)_{L_{\mu}-L_{\tau}} \subset SU(3)_{H}$$

Horizontal lepton symmetry

$$\mathcal{L} \sim y_{\tau} e^{-\frac{2\pi}{\alpha_H}} \tilde{H} \mathbf{L} \mathbf{N}$$

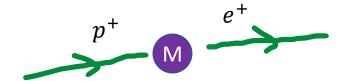
Another interplay of the magnetic 1-form symmetry with the 0form symmetries

Noninvertible symmetries (among other uses) classify when instanton effects in a UV theory could generate small violation of some symmetry

$$\int F\tilde{F} \sim \int E \cdot B \neq 0$$

$$U(1)_{L_{\mu}-L_{\tau}} \subset SU(3)_{H}$$

Horizontal lepton symmetry


$$-\frac{H}{L} - \underbrace{\begin{array}{c} \bar{e} \\ SU(3)_H \end{array}}_{L}$$

$$\mathcal{L} \sim y_{\tau} e^{-\frac{2\pi}{\alpha_H}} \tilde{H} \mathbf{L} \mathbf{N}$$

Have we already discovered all the interesting models where instantons generate naturally small parameters? No!

Learn about some new physical phenomena

Want to understand anomalous violation of global symmetries in the presence of topological defects

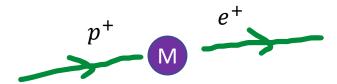
Dirac '31 -> Callan-Rubakov '81 -> ongoing '23

Learn about some new physical phenomena

Want to understand anomalous violation of global symmetries in the presence of topological defects

Dirac '31 -> Callan-Rubakov '81 -> ongoing '23

Gauged $U(1)_{B-L} \rightarrow Z_N$ has cosmic strings with similar effects



For N = 6, cosmological lithium problem In general, minimal extension of SM

Need to understand BF theory with light fermions

Learn about some new physical phenomena

Want to understand anomalous violation of global symmetries in the presence of topological defects

Dirac '31 -> Callan-Rubakov '81 -> ongoing '23

Gauged $U(1)_{B-L} \rightarrow Z_N$ has cosmic strings with similar effects

For N = 6, cosmological lithium problem In general, minimal extension of SM

Need to understand BF theory with light fermions

We've long appreciated that you're `activating' the anomaly in the monopole core $\Delta Q \propto \int \vec{E} \cdot \vec{B}$ Noninvertible symmetries to precisely describe Callan-Rubakov (Komargodski et al. '23?)

See also Brennan, Hong, Wang 2302.00777, axion cosmic strings can have interesting interplay with dark Abelian Higgs sectors Also McNamara, Reece & Asadi, Homiller, Lu, Reece 2212.03882 on Higgsed CP and domain walls

Conclusions

- Models you care about have generalized symmetries
- Understanding the generalized symmetries offers insight into UV completions, model-building opportunities, and the fascinating physics of topological defects
- What more do we have to learn from subtler notions of symmetries in field theories?