Earth Mover's Distance and CP-violation

Pheno 2023

Tony Menzo

PhD candidate, University of Cincinnati

In collaboration with Adam Davis, Ahmed Youssef, and Jure Zupan Based on 2301.13211

3-body CPV

Direct CPV:
$$\frac{\mathcal{M}(X \to \cdots)}{\mathcal{M}(\bar{X} \to \overline{\cdots})} \neq 1$$

12 degrees of freedom

- 10 constraints

2 independent variables

 $\boldsymbol{P}, M \longrightarrow \boldsymbol{p}_1, m_1 \\ \boldsymbol{p}_2, m_2 \\ \boldsymbol{p}_3, m_3$

Phase space-dependent CPV

Dalitz analysis

Consider a 3-body decay:

 $m_{ij}^{2} = (p_{i} + p_{j})^{2}$ $(m_{1}+m_{2})^{2}$ $(m_{23})_{\text{max}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$ $(m_{23})_{\text{min}}$

What to remember:

$$d\Gamma \propto |\mathcal{M}|^2 dm_{12}^2 dm_{23}^2$$

Direct CPV manifests as local density asymmetries between conjugate Dalitz plots

Dalitz analysis

What to remember:

$$d\Gamma \propto |\mathcal{M}|^2 dm_{12}^2 dm_{23}^2$$

Direct CPV manifests as local density asymmetries between conjugate Dalitz plots

Tests of CPV

1. Binned test statistic $A_{\text{CP}} = \frac{N - \bar{N}}{N + \bar{N}}$

Binning washes out asymmetry

2. Model the amplitude

Extremely complicated

3. Unbinned test statistic

$$T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} + \sum_{i,j>i}^{\bar{N}} \frac{\psi_{ij}}{\bar{N}(\bar{N}-1)} - \sum_{i,j}^{N,\bar{N}} \frac{\psi_{ij}}{N\bar{N}}, \qquad \psi_{ij} \equiv \psi(d_{ij};\sigma) = e^{-d_{ij}^2/2\sigma^2}$$

Tests of CPV

1. Binned test statistic \longrightarrow $A_{\mathrm{CP}} = \frac{N - \bar{N}}{N + \bar{N}}$

Binning washes out asymmetry

2. Model the amplitude

Extremely complicated

3. Unbinned test statistic

$$T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} + \sum_{i,j>i}^{\bar{N}} \frac{\psi_{ij}}{\bar{N}(\bar{N}-1)} - \sum_{i,j}^{N,\bar{N}} \frac{\psi_{ij}}{N\bar{N}}, \qquad \psi_{ij} \equiv \psi(d_{ij};\sigma) = e^{-d_{ij}^2/2\sigma^2}$$

Statistical distance

Input two statistical samples and output scalar value.

Larger values = dissimilar distributions Smaller values = similar distributions

One example:

Wasserstein or Earth Mover's distance (EMD)

$$W_q(\mathcal{E}, \bar{\mathcal{E}}) = \left[\min_{\{f_{ij} \ge 0\}} \sum_{i=1}^{N} \sum_{j=1}^{\bar{N}} f_{ij} (\hat{d}_{ij})^q\right]^{1/q}$$

EMD and **CPV**

Direct CPV manifests as local density asymmetries between conjugate Dalitz plots.

An exagerated example:

EMD and **CPV**

Direct CPV manifests as local density asymmetries between conjugate Dalitz plots.

Performance as a statistic

Visualization

$$\mathcal{A}_{CP}(s_{12}, s_{13}) = \frac{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) - d\Gamma(s_{12}, s_{13})}{d\bar{\Gamma}(\bar{s}_{12}, \bar{s}_{13}) + d\Gamma(s_{12}, s_{13})}$$

$$W_q = \sum_i \delta W_q(i)$$

$$\mathcal{W}_{CP}^{q}(s_{12}, s_{13}) = \frac{\sum_{i} \delta \bar{W}_{i} - \sum_{i} \delta W_{i}}{\sum_{i} \delta \bar{W}_{i} + \sum_{i} \delta W_{i}}$$

Visualization

Visualization

Binned variation for large dataset:

Windowed-Wasserstein statistic

Conclusion

The Wasserstein distance can be used as a robust, model independent, unbinned test of CP violation.

- Future directions:
 - Time dependent CPV
 - Flavor violation
 - Is there a better test?
 - Model independent way of classifying CPV resonances

BACK-UP

Direct CP violation in the Dalitz Plot

Neccesary condition for direct CPV: $\frac{\mathcal{M}(X \to \cdots)}{\mathcal{M}(\bar{X} \to \overline{\cdots})} \neq 1$

Requires at least two interferring amplitudes:

$$\mathcal{M}(X \to \cdots) = m_1 e^{i\phi_1} e^{i\delta_1} + m_2 e^{i\phi_2} e^{i\delta_2}$$

$$\mathcal{M}(\bar{X} \to \overline{\cdots}) = m_1 e^{-i\phi_1} e^{i\delta_1} + m_2 e^{-i\phi_2} e^{i\delta_2}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\frac{\Gamma(X) - \Gamma(\bar{X})}{\Gamma(X) + \Gamma(\bar{X})} = \frac{-m_1 m_2 \sin(\phi_1 - \phi_2) \sin(\delta_1 - \delta_2)}{|m_1|^2 + |m_2|^2 + 2m_1 m_2 \cos(\phi_1 - \phi_2) \cos(\delta_1 - \delta_2)}$$

Unbinned tests for CPV

Energy Test: $O(n^2)$, tuned on σ

$$T = \sum_{i,j>i}^{N} \frac{\psi_{ij}}{N(N-1)} + \sum_{i,j>i}^{\bar{N}} \frac{\psi_{ij}}{\bar{N}(\bar{N}-1)} - \sum_{i,j}^{N,\bar{N}} \frac{\psi_{ij}}{N\bar{N}}, \qquad \psi_{ij} \equiv \psi(d_{ij};\sigma) = e^{-d_{ij}^2/2\sigma^2}$$

Data

Two analyses: Low statistics (1000 event datasets) and large statistics (10⁵ event datasets)

EMD intuition

The Earth Mover's Distance and CP-Violation