Magnetic Moments of Dark Baryons

Chester Mantel

Work in progress with Pouya Asadi and Graham Kribs

Dark Matter

Dark Matter

- Baryons
- Dark energy
- Dark matter

Dark Matter

- Baryons
- Dark energy
- Dark matter

Model

Dark quarks

- $\begin{array}{ccc} \bullet & Fermion \ with \\ & Dirac \ mass \ m_q \end{array}$
- $N_f = 3, 5, ...$ of $SU(2)_L$
- Hypercharge Y=0

Model

Dark quarks

- Fermion with Dirac mass m_q
- $N_f = 3, 5, ...$ of $SU(2)_L$
- Hypercharge Y=0

Dark color

- $\begin{array}{ccc} \bullet & SU(N_c) \; gauge \\ group Odd \; N_c \end{array}$
- Confines at $\Lambda_{dark} \ll m_q$

Model

Dark quarks

- Fermion with Dirac mass m_q
- $N_f = 3, 5, ...$ of $SU(2)_L$
- Hypercharge Y=0

Dark color

- $SU(N_c)$ gauge group Odd N_c
- Confines at $\Lambda_{dark} \ll m_q$

DM Candidate

- Lightest stable baryon
- Spin- $\frac{1}{2}$
- Zero charge, hypercharge

SM Coupling

SM Coupling

SM Coupling $Q_B = 0$

$$Q_B = 0$$

SM Coupling $Q_B = 0$

$$Q_B = 0$$

$$SM \ Coupling \quad Q_B = 0 \qquad T^3_B + Y_B \sin(\theta_w) = 0$$

$$\sum_{n} \mathcal{O}_{n} / \Lambda^{n} = \frac{1}{\Lambda} \overline{\chi} \sigma_{\mu\nu} \chi F^{\mu\nu} + \mathcal{O}(1/\Lambda^{6})$$

@ dim 5:
$$\frac{1}{\Lambda} \to \mu_{\chi} = \frac{eQ_{\chi}}{2m_{\chi}}$$

$$\mathcal{L} \supset rac{1}{\Lambda} \overline{\chi} \sigma_{\mu
u} \chi F^{\mu
u}$$

$$\mathcal{L} \supset rac{1}{\Lambda} \overline{\chi} \sigma_{\mu
u} \chi F^{\mu
u}$$

@ dim 5:
$$\frac{1}{\Lambda} \to \mu_{\chi} = \frac{eQ_{\chi}}{2m_{\chi}}$$

Scaled up neutron:
$$\frac{1}{\Lambda} \to \frac{\mu_\chi}{2} = \frac{g_M e}{8 m_\chi}$$

Direct detection constraints: $m_{\chi} < 47 \text{ TeV for } g_{M} \sim 1$

see also J. Eby, P. Fox, G. Kribs, to appear

@ dim 5:
$$\frac{1}{\Lambda} \to \mu_{\chi} = \frac{eQ_{\chi}}{2m_{\chi}}$$

Scaled up neutron:
$$\frac{1}{\Lambda} \to \frac{\mu_{\chi}}{2} = \frac{g_M e}{8m_{\chi}}$$

$$\mathcal{L} \supset rac{1}{\Lambda} \overline{\chi} \sigma_{\mu
u} \chi F^{\mu
u}$$

Large
$$N_c$$
 QCD:
 $\mu_{
m nucleon} = \mathcal{O}(N_c)$

Direct detection constraints: $m_{\chi} < 47 \text{ TeV for } g_{M} \sim 1$

see also J. Eby, P. Fox, G. Kribs, to appear

$$\mathcal{L} \supset \frac{1}{\Lambda} \overline{\chi} \sigma_{\mu\nu} \chi F^{\mu\nu}$$

@ dim 5:
$$\frac{1}{\Lambda} \to \mu_{\chi} = \frac{eQ_{\chi}}{2m_{\chi}}$$

Scaled up neutron:
$$\frac{1}{\Lambda} \to \frac{\mu_\chi}{2} = \frac{g_M e}{8 m_\chi}$$

Large
$$N_c$$
 QCD:
 $\mu_{\mathrm{nucleon}} = \mathcal{O}(N_c)$

Direct detection constraints: $m_{\chi} < 47~TeV$ for $g_{M} \sim 1$

see also J. Eby, P. Fox, G. Kribs, to appear

What is the magnetic moment of the ground state baryon?

Quark Model

Baryon wavefunction: $\Psi_B = \xi_{\text{color}} \eta_{\text{space}} \phi_{\text{spin}} \psi_{\text{flavor}} \rightarrow \text{Spin-flavor symmetric}$ Antisymmetric: Confinement Symmetric for s-wave

Quarks transform under fundamental rep of $SU(N_f)$ and $SU(2_{spin})$

e.g., $SU(2)_L$ triplet with $N_c = 3$,

Spin: $2 \otimes 2 \otimes 2 = 2 \oplus 2 \oplus 4$

The Eightfold Way

The Eightfold Way

The Dark Eightfold Way

e.g.
$$N_c = N_f = 3$$

Wavefunction:
$$|\Sigma^{0}\rangle = \frac{1}{\sqrt{2}} \left[\frac{1}{\sqrt{12}} (2uds - usd - dsu + 2dus) \cdot \frac{1}{\sqrt{6}} (\uparrow \uparrow \downarrow - \uparrow \downarrow \uparrow \uparrow - \downarrow \uparrow \uparrow) \right]$$

 $+ \frac{1}{2} (usd + dsu - sdu - sud) \cdot \frac{1}{\sqrt{2}} (\uparrow \downarrow \uparrow - \downarrow \uparrow \uparrow) \right]$
 $= \frac{1}{6} \left[(2u \uparrow d \uparrow s \downarrow - u \uparrow d \downarrow s \uparrow - u \downarrow d \uparrow s \uparrow) + \text{permuations} \right]$

Magnetic moment:
$$\mu_{\Sigma^0} = \frac{1}{36} \left[4 \left(\mu_u + \mu_d - \mu_s \right) + \left(\mu_u - \mu_d + \mu_s \right) + \left(-\mu_u + \mu_d + \mu_s \right) \right] \times 3$$

$$= \frac{1}{3} (2\mu_u + 2\mu_d - \mu_s)$$

Results

Neutral spin-½ baryons

with zero magnetic moment

with nonzero magnetic moment

$N_{ m f}$ $N_{ m e}$		3		5		7	9
3		2		3		4	5
5	4	2	11	10	19	36	
7	6	6	24	50			
9	8	12			•		
11	10	20					

Dark Quark Magnetic Moment:
$$\;\; \mu_i = rac{Q_i e}{2 m_q} S_i := Q_i ilde{\mu} \;\;$$

Discussion

I. Some neutral spin-½ baryons have vanishing magnetic moments What are the selection rules for zero magnetic moment?

Discussion

- I. Some neutral spin-½ baryons have vanishing magnetic moments What are the selection rules for zero magnetic moment?
- II. If baryon mass degeneracy is lifted by $\delta m_q \sim Q_q^2$, then the dark matter magnetic moment always vanishes.

Discussion

- I. Some neutral spin-½ baryons have vanishing magnetic moments What are the selection rules for zero magnetic moment?
- II. If baryon mass degeneracy is lifted by $\delta m_q \sim Q_q^2$, then the dark matter magnetic moment always vanishes.
- III. Quark model exact at large $N_c \rightarrow \mu_{\chi} = \mathcal{O}(1/N_c)$ Constraints on dim-6 operators dominate – weaker than constraints on magnetic dipole

Thank you!

Questions?

Acknowledgements:

Summer Undergraduate Research Fellowship

Backup: Quark Model Generalized

- Express baryon in quark bases of spin i and flavor j

$$|\mathcal{B}_{a}\rangle = \sum_{i_{1},j_{1},...,i_{N_{c}},j_{N_{c}}} (C_{a})_{i_{1},j_{1},...,i_{N_{c}},j_{N_{c}}} |i_{1},j_{1};...;i_{N_{c}},j_{N_{c}}\rangle$$

• Calculate the magnetic moment from wavefunction

$$\langle \mathcal{B}_a | \hat{\mu} | \mathcal{B}_a \rangle = \mu_{\mathcal{B}_a} = \sum_{i_1, j_1, \dots, i_{N_a}, j_{N_a}} \left[(C_a)_{i_1, j_1, \dots, i_{N_c}, j_{N_c}} \right]^2 \left[(-1)^{j_1} \mu_{i_1} + \dots + (-1)^{j_{N_c}} \mu_{i_{N_c}} \right]^2$$

Backup: Baryon wavefunctions

• Flavor wavefunctions are SU(N_f) tensors. Representation has multiplicity γ

$$egin{align} \mathcal{F}_a^{\gamma} &= (\mathcal{F}_a^{\gamma})_{i_{m+2},...,\ i_{N_c}}^{i_{1},...,\ i_{m+1}} \ \mathcal{F}_a^{\gamma} &= (\mathcal{F}_a^{\gamma})_{i_{m+1},...,\ i_{N}}^{i_{1},...,\ i_{M}} \ \end{array}$$

$$Odd N_c = 2m + 1$$

Even $N_c = 2m$

- Spin wavefunction identical to first flavor
 - Do so to match the multiplicities by the symmetries of their indices

$$\mathcal{S}^{\gamma} = \mathcal{F}_1^{\gamma} = (\mathcal{S}^{\gamma})_{j_{m+2},\dots,j_{N_c}}^{j_1,\dots,j_{m+1}}$$
 Odd N_c

$$(\mathcal{S}^{\gamma})_{j_{m+1},\dots,j_{N_c}}^{j_1,\dots,j_m}$$
 Even N_c .

• Baryons are product of spin and flavor, summed over multiplicity

$$\mathcal{B}_{a} = \sum_{\gamma} \mathcal{S}^{\gamma} \otimes \mathcal{F}_{a}^{\gamma}$$

$$= (\mathcal{B}_{a}^{\gamma})_{j_{m+2},...,j_{N_{c}},i_{m+2},...,i_{N_{c}}}^{j_{1},...,j_{N_{c}},i_{m+2},...,i_{N_{c}}} \qquad \text{Odd}$$

$$= (\mathcal{B}_{a}^{\gamma})_{j_{m+1},...,j_{N_{c}},i_{m+1},...,i_{N_{c}}}^{j_{1},...,j_{N_{c}},i_{m+1},...,i_{N_{c}}} \qquad \text{Even}$$

Odd N_c ,

Even N_c .

Backup: Quark model generalized

$$(\mathbf{N_f}, \mathbf{2})_1 \otimes, \dots, \otimes (\mathbf{N_f}, \mathbf{2})_{N_c} = \bigoplus_p M_p(\mathbf{R}_{p, \mathrm{flavor}}, \mathbf{R}_{p, \mathrm{spin}})$$

SU(N_f) irrep of spin-½ baryons: $(1, \frac{N_c-1}{2}, \overbrace{0, \dots, 0}^{N_f-3})$ • For N_f = 3

Backup: Proton Large N_c Scaling

- "Proton" magnetic moment
 - Two flavors, $I_3 = \frac{1}{2}$
 - Neutron is C conjugate charged when quarks are a double with zero hypercharge

Agrees with $\mu_{\rm nucleon} = \mathcal{O}(N_c)$

N_c	μ_B
3	$(4\mu_+ - \mu)/3$
5	$(5\mu_+ - 2\mu)/3$
7	$2\mu_+ - \mu$
9	$(7\mu_+ - 4\mu)/3$
11	$(8\mu_+ - 5\mu)/3$

Backup: Results: $N_f = 5$, $N_c = 3$

Quark content	μ_B	$\mu_B(\mu_i o Q_i)$
q_1,q_3,q_5	μ_3	0
q_2,q_3,q_4	μ_3	0
	<i>~</i> 3	0
q_1,q_3,q_5	$\frac{1}{3}\left(2\mu_1+2\mu_5-\mu_3\right)$	0
q_2,q_3,q_4	$\frac{1}{3}\left(2\mu_2 + 2\mu_4 - \mu_3\right)$	0
q_1,q_4,q_4	$\frac{1}{3}\left(4\mu_4-\mu_1\right)$	-2
q_2,q_2,q_5	$rac{1}{3}\left(4\mu_2-\mu_5 ight)$	2

$$Q_i = \begin{pmatrix} 2\\1\\0\\-1\\-2 \end{pmatrix}$$