

Detecting Superradiant Dark Photon Strings in Gravitational Wave Experiments

CLAYTON RISTOW, DAWID BRZEMINSKI, ANSON HOOK, JUNWU HUANG

Dark Photon Strings
$$\mathcal{L} = -\frac{1}{4}F^{D\mu\nu}F^{D}_{\mu\nu} + \frac{1}{2}|D_{\mu}\Phi|^2 - \lambda(|\Phi|^2 - v^2)^2$$

Dark Photon Strings
$$|F_{D}^{\mu\nu}| \qquad \mathcal{L} = -\frac{1}{4}F^{D\mu\nu}F_{\mu\nu}^{D} + \frac{1}{2}|D_{\mu}\Phi|^{2} - \lambda(|\Phi|^{2} - v^{2})^{2}$$

Ground State: $\langle \Phi \rangle = 0$, U(1) Fully Restored g_D

Ground State: $\langle \Phi \rangle = v$, U(1) Broken

Dark Photon Strings
$$|F_{D}^{\mu\nu}| \qquad \mathcal{L} = -\frac{1}{4}F^{D\mu\nu}F_{\mu\nu}^{D} + \frac{1}{2}|D_{\mu}\Phi|^{2} - \lambda(|\Phi|^{2} - v^{2})^{2}$$

Ground State: $\langle \Phi \rangle = 0$, U(1) Fully Restored

 g_D

 $g_D v^2$

Ground State: $\langle \Phi \rangle = v, U(1)$ Broken

Ground State: Strings*

Dark Photon Strings
$$|F_{D}^{\mu\nu}| \qquad \mathcal{L} = -\frac{1}{4}F^{D\mu\nu}F_{\mu\nu}^{D} + \frac{1}{2}|D_{\mu}\Phi|^{2} - \lambda(|\Phi|^{2} - v^{2})^{2}$$

$$\frac{\lambda v^2}{g_D}$$
 Ground State: $\langle \Phi \rangle = 0$, $U(1)$ Fully Restored

Superheated Phase Transition

 m_D^{-1} **Ground State: Strings***

Ground State: $\langle \Phi \rangle = v, U(1)$ Broken

Answer 2 Questions:

A. How can these strings arrive on earth?

(A: Superradiance)

B. What experimental signals would these strings produce?

(A: Gravitational Wave Experiments $(U(1)_{B-L})$)

A. How can these strings arrive on earth?

Superradiance

Bosons spontaneously produced outside a spinning blackhole

Black Hole Spin: a_*

Black Hole Mass: M

Boson Mass: *m*

If, $m \leq \omega_{BH}$:

Bosons cloud forms by extracting a_*

Superradiance

Bosons spontaneously produced outside a spinning blackhole

Black Hole Spin: a_* Black Hole Mass: M

Boson Mass: *m*

If, $m \leq \omega_{BH}$:

Bosons cloud forms by extracting a_{st}

Gravitational Atom with fine structure $\alpha = GMm$

Cloud grows exponentially!

Superradiance Condition: $m_D \leq \omega_{BH}$

Superradiance Condition: $m_D \leq \omega_{BH}$

Superradiance Cycle:

1. Cloud Grows at rate $\Gamma_{SR} = 4\alpha^6 m_A$

Superradiance Condition: $m_D \leq \omega_{BH}$

Superradiance Cycle:

- 1. Cloud Grows at rate $\Gamma_{SR} = 4\alpha^6 m_A$
- 2. $|F_D^{\mu\nu}| \sim B_{sh} = \lambda^{1/2} v^2$, Strings loops form.

Superradiance Condition: $m_D \leq \omega_{BH}$

Superradiance Cycle:

- 1. Cloud Grows at rate $\Gamma_{SR} = 4\alpha^6 m_A$
- 2. $|F_D^{\mu\nu}| \sim B_{sh} = \lambda^{1/2} v^2$, Strings loops form.
- 3. Strings are ejected in a "Stringy Bosenova".

- 1. Cloud Grows at rate $\Gamma_{SR} = 4\alpha^6 m_A$
- 2. $|F_D^{\mu\nu}| \sim B_{sh} = \lambda^{1/2} v^2$, Strings loops form.
- 3. Strings are ejected in a "Stringy Bosenova".
- 4. Repeat until Superradiance condition is not satisfied

How many of these strings arrive on earth?

String Rates: Single Burst

Black Hole $r{\sim}$ kpc

String Rates: Single Burst

Black Hole Earth

$$\Phi = \frac{N_{Strings}}{4\pi r^2 \Delta t}$$

String Rates: Single Burst

 M, a_*

 $r\sim \mathrm{kpc}$

$$\Phi = \frac{N_{Strings}}{4\pi r^2 \Delta t}$$

Strings hitting detectors much smaller than m_D^{-1} :

$$\Gamma_{Burst} = A_{string} \Phi \approx \frac{\lambda}{g_D^2} \frac{m_D}{2\pi^2 \alpha^3 (r m_D)^3}$$

Black Hole can repeat this process many times:

M, a_*

$$N_B = \frac{M\alpha\Delta a_*}{V_{cloud}B_{sh}^2}$$
 $\Delta t_B \approx \frac{\mathrm{e-folds}}{\Gamma_{SR}}$ $\Delta t_B \sim m_D^{-7} \sim \mathrm{days} - 10^{11} \, \mathrm{yr}$

Earth

r∼kpc

Black Hole can repeat this process many times:

$$N_B = \frac{M\alpha\Delta a_*}{V_{cloud}B_{sh}^2}$$

$$\Delta t_B \approx \frac{\mathrm{e-folds}}{\Gamma_{SR}}$$

$$\Delta t_B \sim m_D^{-7} \sim \text{days } -10^{11} \text{ yr}$$

Black Hole's "Superradiant Lifecycle":

Black Hole "lives" for $\tau_{BH}=N_B\Delta t_B+r$. During that time, it is "on" for rN_B

r∼kpc

Black Hole can repeat this process many times:

$$N_B = \frac{M\alpha\Delta a_*}{V_{cloud}B_{sh}^2}$$

$$\Delta t_B \approx \frac{\mathrm{e-folds}}{\Gamma_{SR}}$$

$$\Delta t_B \sim m_D^{-7} \sim \text{days } -10^{11} \text{ yr}$$

Black Hole's "Superradiant Lifecycle":

 M, a_*

Black Hole "lives" for $\tau_{BH}=N_B\Delta t_B+r$.

During that time, it is "on" for
$$rN_B$$

$$T_{SBH} = N_B^{Eff} \Gamma_B \qquad N_B^{Eff} = \frac{\text{"Time On"}}{\tau_{BH}} = \frac{rN_B}{\Delta t_B N_B + r}$$

r∼kpc

Black Hole can repeat this process many times:

$$N_B = \frac{M\alpha\Delta a_*}{V_{cloud}B_{sh}^2}$$

$$N_B = \frac{M\alpha\Delta a_*}{V_{cloud}B_{sh}^2}$$
 $\Delta t_B \approx \frac{\text{e-folds}}{\Gamma_{SR}}$

$$\Delta t_B \sim m_D^{-7} \sim \text{days } -10^{11} \text{ yr}$$

Black Hole's "Superradiant Lifecycle":

Black Hole "lives" for $\tau_{BH} = N_B \Delta t_B + r$.

During that time, it is "on" for rN_R

$$T_{SBH} = N_B^{Eff} T_B$$

$$t \Gamma_{SBH} = N_B^{Eff} \Gamma_B$$
 $N_B^{Eff} = \frac{\text{"Time On"}}{\tau_{BH}} = \frac{rN_B}{\Delta t_B N_B + r}$

Sum over all blackholes:

$$\Gamma_{Tot}(\lambda/g_D^2, m_D) = \left\langle N_{BH} N_B^{Eff} \Gamma_{Burst} \right\rangle_{M,a_*,r}$$

B. What experimental signals do these strings produce?

Take a $U(1)_{B-L}$ dark photon.

Take a $U(1)_{B-L}$ dark photon. String Rest Frame:

Mass experiences an acceleration

Take a $U(1)_{B-L}$ dark photon. String Rest Frame:

Mass experiences an acceleration

Equal numbers of protons and neutrons:

$$\frac{Q_D}{M} = \frac{g_D}{2m_p}$$

$$B(r) = \frac{m_D^2}{2g_D} K_0(m_D r)$$

Take a $U(1)_{B-L}$ dark photon. String Rest Frame:

Mass experiences an acceleration

Equal numbers of protons and neutrons:

$$B(r) = \frac{m_D^2}{2g_D} K_0(m_D r) \longrightarrow \text{ Effect is independent of } g_D!$$

Take a $U(1)_{B-L}$ dark photon. String rest frame:

Mass experiences an acceleration

Equal numbers of protons and neutrons: $\frac{Q_D}{M} = \frac{(g_D)}{2m_p}$

$$\frac{Q_D}{M} = \frac{g_D}{2m_p}$$

$$B(r) = \frac{m_D^2}{2g_D} K_0(m_D r) \longrightarrow \text{ Effect is independent of } g_D!$$

Solve equations of motion:

$$x(t) = \int \frac{d\omega}{2\pi} e^{i\omega t} \tilde{x}(\omega) \qquad \tilde{x}(\omega) = -\frac{\pi m_D^2 v}{8m_p \omega^2 \sqrt{\omega^2 + m_D^2 v^2}} e^{-\frac{b}{v}\sqrt{\omega^2 + m_D^2 v^2}}$$

LIGO measures displacement $l_{\parallel}-l_{\perp}$ (Michaelson Displacement) and strain $h=\frac{L_{\perp}-L_{\parallel}}{L_0}$

Frequency, Hz

MAGIS-100

Einstein Telescope

Einstein Telescope will measure strain h

Signal to Noise Ratio

Signal to Noise Ratio

Ongoing Directions

- More precise computations for signals at MAGIS and LIGO
- Signal at LISA

Thanks

- Anson Hook, Junwu Huang, and Dawid Brzeminski
- University of Maryland, MCFP, Perimeter Institute, and NSF
- University of Pittsburgh, Pheno 2023

Back-Ups

Summing Over Black Holes

In our galaxy, there are multiple blackholes that are "alive" and can be estimated based on black hole formation rate $R_{BH} \approx 0.009 \, \mathrm{yr}^{-1}$.

$$N_{BH} = R_{BH} \min(\tau_{BH}, \text{Age of Milky Way})$$

$$N_{BH} = R_{BH} \min(\tau_{BH}, \text{Age of Milky Way})$$
 $\Gamma_{Tot}(M, a_*, r, g_D, m_D, \lambda) = N_{BH} N_{Expected} \Gamma_{Burst}$

Average or distributions for:

- Black hole mass: $P(M) = M_0^{-1} e^{-(M-M_{min})/M_0}$ $M_{min} = 4.1 M_{\odot}, \quad M_0 = 7.9 M_{\odot}$
- Black hole spin: Optimistic Distribution, 80% above $a_* > .9$
- Black hole distance: Proportional to stellar distribution