

Testing Lepton Flavor Universality at Future Lepton Colliders

With Tin Seng Ho, Tsz Hong Kwok Lingfeng Li and Tao Liu JIANG Xuhui 蒋 旭辉

Based on 2212.02433

Hong Kong University of Science and Technology

Pheno 2023

Email: xjiangaj at connect dot ust dot hk

- Lepton Flavor Universality (LFU) Standard Model: 3 generations of leptons
 - Different Masses

e: 0.511 MeV

 $\mu: 105.66 \text{ MeV}$ $\tau: 1.777 \text{ GeV}$

A Universal Coupling to Gauge

One of the hypothesis in the SM

Lepton Flavor Universality (LFU)

Precise Measurement

A Test of SM

Hints for BSM

Very Sensitive in Flavor Physics

Flavor Changing Neutral Current (FCNC)

SM: Loop-level suppression.

$$\Gamma \sim \frac{m_f^3}{m_W^4}$$

BSM with LFUV:

$$m_W \rightarrow \Lambda_{NP}$$

Flavor Changing Charged Current (FCCC)

LFU Violation

Tree-level BSM realizations:

SM

uncoloured

coloured

[Zheng. et al.]

Hadron Decay

meson or baryon containing b quark

 H_h

$$R_{H_c} = \frac{\operatorname{Br}(H_b \to H_c \tau v)}{\operatorname{Br}(H_b \to H_c \mu v)}$$

 H_c meson or baryon containing c quark

SM Predictions

VS. Experimental Results

	H_b	H_c	SM Prediction ²	Experimental Average
R_D	B^0, B^{\pm}	D^0, D^{\pm}	0.307 [1, 2]	0.340 ± 0.030 [3]
R_{D^*}	B^0,B^\pm	$D^{*0}, D^{*\pm}$	0.253 [1, 2]	0.295 ± 0.014 [3]
$R_{J/\psi}$	B_c	J/ψ	$0.289 \left[4-6 \right]$	$0.71 \pm 0.17 \pm 0.18$ [7]
R_{D_s}	B_s	D_s	0.393 [2, 8-13]	N/A
$R_{D_s^*}$	B_s	D_s^*	0.303 [2, 8, 10, 13]	N/A
R_{Λ_c}	Λ_b	Λ_c	$0.334 \ [14-18]$	0.242 ± 0.076 [19]

Simply Fluctuations? Or BSM with LFUV?

> Where to Test Such?

CEPC

FCC-ee

China

Europe

Study at Z-Pole: Z Factory

Not only electroweak, but also flavor!

	Belle II	LHCb	$\operatorname{Tera-}Z$	$10 \times \text{Tera-}Z$
B^{0}, \bar{B}^{0}	5.3×10^{10}	6×10^{13}	1.2×10^{11}	1.2×10^{12}
B^\pm	5.6×10^{10}	6×10^{13}	1.2×10^{11}	1.2×10^{12}
$B_s,ar{B}_s$	$5.7 imes 10^8$	2×10^{13}	3.1×10^{10}	3.1×10^{11}
B_c^{\pm}	-	4×10^{11}	1.8×10^8	1.8×10^{9}
$\Lambda_b,ar{\Lambda}_b$	-	2×10^{13}	2.5×10^{10}	2.5×10^{11}

Comparison With Other Facilities

White: compared to LHCb; Yellow: compared to B-factories

Motivation

Set a baseline for the studies at Tera-Z.

$$R_{H_c} = \frac{\text{Br}(H_b \to H_c \tau v)}{\text{Br}(H_b \to H_c \mu v)}$$

Vector $R_{J/\psi}$ and $R_{D_s^*}$

Pseudoscalar R_{D_s}

Baryonic R_{Λ_c}

Annihilation $\operatorname{Br}(B_c \to \tau v)$ [Zheng. et al.]

SU(2)

Other studies: $b \to s \tau \tau$ [Li and Liu (2021)] $b \to s \nu \nu$ [Li et al. (2022)]

Motivation

Set a baseline for the studies at Tera-Z.

$$R_{H_c} = \frac{\text{Br}(H_b \to H_c \tau v)}{\text{Br}(H_b \to H_c \mu v)}$$

Vector
$$R_{J/\psi}$$
 and $R_{D_s^*}$

Pseudoscalar
$$R_{D_s}$$

Baryonic
$$R_{\Lambda}$$

$${
m Br}(B_c o au
u)$$
 [Zheng. et al.]

SU(2)

Other studies: $b \to s \tau \tau$ [Li and Liu (2021)] $b \to s v v$ [Li et al. (2022)]

Signals

•
$$R_{J/\psi} = \frac{\text{Br}(B_c \to J/\psi \tau v)}{\text{Br}(B_c \to J/\psi \mu v)}$$

$$J/\psi \rightarrow \mu\mu, \tau \rightarrow \mu\nu\overline{\nu}$$

$$D_s^* \to D_s \gamma, D_s \to \phi(\to KK)\pi, \tau \to \mu\nu\overline{\nu}$$

$$R_{\Lambda_c} = \frac{\operatorname{Br}(\Lambda_b \to \Lambda_c \tau \nu)}{\operatorname{Br}(\Lambda_b \to \Lambda_c \mu \nu)}$$

$$\Lambda_c \to pK\pi, \tau \to \mu\nu\overline{\nu}$$

Possible Backgrounds

"Wrongly" produced Muon

"Wrongly" produced H_c

+ Others

Results

Conservative: no event-level involved.

Physical Quantity		ty SM Value	Tera-Z	$10 \times \text{Tera-}Z$
	$R_{J/\psi}$	0.289	2.89×10^{-2}	9.15×10^{-3}
	R_{D_s}	0.393	4.15×10^{-3}	1.31×10^{-3}
	$R_{D_s^*}$	0.303	3.25×10^{-3}	1.03×10^{-3}
	R_{Λ_c}	0.334	9.74×10^{-4}	3.08×10^{-4}
BR	$R(B_c o au u)$	Zheng. et al.] $2.36 imes 10^{-2} \ [6]$	0.01 [6]	3.16×10^{-3}

Relative Uncertainties at Tera-Z:

$$O(0.1\%) - O(1\%)$$

Results

Systematic ~ a factor of statistical rel. uncert.

Results

Systematic ~ a factor of statistical rel. uncert.

Theoretical Aspects

EFT method: Low-Energy EFT and SMEFT

SM deviations: \tau sector only!

RG Running and Matching

Low-Energy EFT (LEFT)

EFT Scale
$$\sim m_b << m_Z$$

Examples:

$$O_{S_R}^{\tau} = [\overline{c}P_R b][\overline{\tau}P_L v]$$

$$O_{V_L}^{\tau} = [\overline{c}\gamma^{\mu}P_Lb][\overline{\tau}\gamma_{\mu}P_Lv]$$

- Different Lorentz structures Scalar/Vector Mediator?
- Independent, no correlation

SMEFT (Up to Dim-6 Operators)

$$\frac{1}{\Lambda^2}C_iO_i$$

 $\frac{1}{\Lambda^2}C_iO_i$ NP Scale! $\sim \mathcal{O}(\text{TeV})$

Down Basis Expansion

SU(2)
$$[O_{lq}^{(1)}]_{3332} \qquad (\overline{\nu}\gamma^{\mu}P_{L}\nu + \overline{\tau}\gamma^{\mu}P_{L}\tau)(\overline{b}\gamma_{\mu}P_{L}s)$$
$$[O_{lq}^{(3)}]_{3332} \qquad 2V_{cs}^{*}(\overline{\nu}\gamma^{\mu}P_{L}\tau)(\overline{b}\gamma_{\mu}P_{L}c)$$
$$-(\overline{\nu}\gamma^{\mu}P_{L}\nu - \overline{\tau}\gamma^{\mu}P_{L}\tau)(\overline{b}\gamma_{\mu}P_{L}s)$$

- Correlation exists!
- FCCC and FCNC constrained by same operators

FCCC and FCNC both matter!

Methodology

STEP 1: Use MCMC to constrain LEFT WCs.

12 Observables: $b \rightarrow c\tau v$ $b \rightarrow s\tau \tau$ $b \rightarrow svv$

STEP 2: Run LEFT from b mass to Z mass.

STEP 3: Tree-level matching at Z pole.

$$\mathcal{L}_{\text{SMEFT}}(m_Z) = \mathcal{L}_{\text{LEFT}}(m_Z)$$

STEP 4: Run SMEFT from Z mass to SMEFT scale $\Lambda = 10 \, \text{TeV}$.

SMEFT Constraints

 $10 \times [C_{\ell q}^{(1)}]_{3332} \quad 10 \times [C_{\ell q}^{(3)}]_{3332}$

 $100\times [C_{\ell d}]_{3332}$

 $[C_{qe}]_{3332}$

9 operators in total

 $10\times [C_{\ell edq}]_{3332}$

 $[C_{ledq}]_{3323}$

 $10 \times [C_{lequ}^{(1)}]_{3332} \quad 10 \times [C_{lequ}^{(3)}]_{3332}$

Conclusions and Many Thanks

 Great advantages of Z factories: large luminosity, clean environment and etc.

 LFU being tested via precise measurements at Tera-Z.

Multi-TeV NP being well constrained at Tera-Z.

Back-Up

Back-Up

Preselection

- The 3μ selection. The events with exactly three muon tracks (p_T > 0.1 GeV), and at least two of them sharing the same vertex, are selected.
- The J/ψ selection. Two of the three muons need to be oppositely charged. Their momentum satisfies $|\vec{p}| > 2.5$ GeV. The leading transverse momentum must be > 0.75 GeV, while their total p_T must be > 1 GeV. These two muons form a common vertex, with its distance to the primary vertex (PV) > 0.1 mm. Besides, these two muons must have an invariant mass with $|m_{\mu^+\mu^-} m_{J/\psi}| < 27.5$ MeV for them to be considered as the J/ψ decay products.
- The B_c⁺ selection. We divide the space into signal and tag hemispheres with a plane perpendicular to the displacement of the reconstructed J/ψ. The J/ψ vertex appears in the signal hemisphere. The unpaired third muon (μ₃) appears in the signal hemisphere also and has p_T > 0.375 GeV and |p̄| > 1.5 GeV. The 3μ system needs to have an invariant mass smaller than m_{B_c⁺}.

Back-Up

BKG

Cascade backgrounds We refer to $H_b \to H_c \tau(\mu)\nu + X$ as "cascade backgrounds". Here H_b decays hadronically. In the simulation, any non-signal b-hadron events, if containing the $H_c + \mu$ produced not via semileptonic b-hadron decay at truth level, will be recognized as the cascade backgrounds.

Combinatoric backgrounds We refer to $H_c\tau(\mu)\nu + X$ as "combinatoric backgrounds". Here H_c and $\tau(\mu)$ do not share a parent particle at the truth level. In the simulation, any reconstructed b-hadron events, if containing the $H_c + \mu$ but not identified as the inclusive and cascade backgrounds, will be recognized as the combinatoric backgrounds.

Muon mis-ID backgrounds We refer to $H_c\mu_{\pi} + X$ as "muon mis-ID backgrounds". Here μ_{π} denotes the muon misidentified from pion. In the simulation, any $H_c\pi + X$ events will be recognized as the mis-ID background, weighted by the mis-ID probability $\epsilon_{\mu\pi} = 1\%$ as mentioned above.

Fake H_c backgrounds We refer to $H_{c,F}\mu + X$ as "fake H_c backgrounds". Here $H_{c,F}$ denotes the fake H_c resonance, with the latter decaying as: $J/\psi \to \mu^+\mu^-$, $D_s^- \to K^+K^-\pi^-$, or $\Lambda_c^- \to \bar{p}K^+\pi^-$ in this study. These backgrounds represent the chance that the remnants for reconstructing H_c are not from H_c decays at the truth level. In the analysis, they appear as a continuous distribution of the reconstructed m_{H_c} . A good width resolution of resonance is thus essential for suppressing these backgrounds. In practice, the resonance width is determined by the resolution of the tracking system, given $\Gamma_{H_c} \lesssim \mathcal{O}(\text{keV}) \ll \Delta_{\text{track}}$, where Δ_{track} denotes the tracker smearing effect. We can estimate the level of these backgrounds from the relevant LHCb studies [7, 54, 55]. As summarized in Tab. 3, the rations of the H_c events and the continuous backgrounds in the resonant bin for the reconstructed m_{H_c} are at most a few percent. The reconstructed resonance widths are expected to be further improved at the future Z factories [7, 54, 55]. Furthermore, the fake H_c background sizes can easily be extrapolated by sideband m_{H_c} distributions. So the effect of this type of background can be safely neglected in R_{H_c} precision projections.

Recent LHCb Measurements

Improved lepton universality measurements show agreement with the Standard Model

$$R_{K,K^*} = \frac{\text{Br}(B^{(+,0)} \to K^{(+,*0)} \mu^+ \mu^-)}{\text{Br}(B^{(+,0)} \to K^{(+,*0)} e^+ e^-)}$$

Compatible with SM.

Observables Used for MCMC Fitting

[Zheng. et al.] [Li and Liu (2021)] [Li et al. (2022)] [Altmannshofer, W. et al. (2018)] [Aaij et al. (2018)]

	/3 6 /3				
Physical Quantity	SM Value	$\mathrm{Tera}\text{-}Z$	$10 \times \text{Tera-}Z$	Belle II	LHCb
$R_{J/\psi}$	0.289	2.89×10^{-2}	9.15×10^{-3}	-	-
R_{D_s}	0.393	4.15×10^{-3}	1.31×10^{-3}	-	-
$R_{D_s^*}$	0.303	3.25×10^{-3}	1.03×10^{-3}	-	-
R_{Λ_c}	0.334	9.74×10^{-4}	3.08×10^{-4}	-	-
$\mathrm{BR}(B_c o au u)$	$2.36 \times 10^{-2} \ [6]$	0.01 [6]	3.16×10^{-3}	-	-
$BR(B^+ \to K^+ \tau^+ \tau^-)$	1.01×10^{-7}	7.92 [7]	2.48 [7]	198 [11]	-
$BR(B^0 \to K^{*0} \tau^+ \tau^-)$	0.825×10^{-7}	10.3 [7]	3.27 [7]	-	-
$BR(B_s \to \phi \tau^+ \tau^-)$	0.777×10^{-7}	24.5 [7]	7.59 [7]	-	-
$BR(B_s \to \tau^+ \tau^-)$	7.12×10^{-7}	28.1 [7]	8.85 [7]	-	702 [12]
$BR(B^+ \to K^+ \bar{\nu} \nu)$	4.6×10^{-6} [11]	-	-	0.11 [11]	-
$\mathrm{BR}(B^0 \to K^{*0} \bar{\nu} \nu)$	9.6×10^{-6} [11]	-	-	0.096 [11]	-
$\mathrm{BR}(B_s \to \phi \bar{\nu} \nu)$	$9.93 \times 10^{-6} [77]$	$1.78 \times 10^{-2} \ [77]$	5.63×10^{-3}	-	-

12 observables: 9 effective, some others similar