Testing Lepton Flavor Universality at Future Lepton Colliders With Tin Seng Ho, Tsz Hong Kwok Lingfeng Li and Tao Liu JIANG Xuhui 蒋 旭辉 Based on 2212.02433 Hong Kong University of Science and Technology Pheno 2023 Email: xjiangaj at connect dot ust dot hk - Lepton Flavor Universality (LFU) Standard Model: 3 generations of leptons - Different Masses e: 0.511 MeV $\mu: 105.66 \text{ MeV}$ $\tau: 1.777 \text{ GeV}$ A Universal Coupling to Gauge One of the hypothesis in the SM Lepton Flavor Universality (LFU) Precise Measurement A Test of SM Hints for BSM Very Sensitive in Flavor Physics Flavor Changing Neutral Current (FCNC) SM: Loop-level suppression. $$\Gamma \sim \frac{m_f^3}{m_W^4}$$ **BSM** with LFUV: $$m_W \rightarrow \Lambda_{NP}$$ Flavor Changing Charged Current (FCCC) #### LFU Violation #### Tree-level BSM realizations: SM uncoloured coloured [Zheng. et al.] #### Hadron Decay meson or baryon containing b quark H_h $$R_{H_c} = \frac{\operatorname{Br}(H_b \to H_c \tau v)}{\operatorname{Br}(H_b \to H_c \mu v)}$$ H_c meson or baryon containing c quark #### **SM Predictions** ## VS. Experimental Results | | H_b | H_c | SM Prediction ² | Experimental Average | |-----------------|----------------|---------------------|----------------------------|------------------------------| | R_D | B^0, B^{\pm} | D^0, D^{\pm} | 0.307 [1, 2] | 0.340 ± 0.030 [3] | | R_{D^*} | B^0,B^\pm | $D^{*0}, D^{*\pm}$ | 0.253 [1, 2] | 0.295 ± 0.014 [3] | | $R_{J/\psi}$ | B_c | J/ψ | $0.289 \left[4-6 \right]$ | $0.71 \pm 0.17 \pm 0.18$ [7] | | R_{D_s} | B_s | D_s | 0.393 [2, 8-13] | N/A | | $R_{D_s^*}$ | B_s | D_s^* | 0.303 [2, 8, 10, 13] | N/A | | R_{Λ_c} | Λ_b | Λ_c | $0.334 \ [14-18]$ | 0.242 ± 0.076 [19] | | | | | | | ### Simply Fluctuations? Or BSM with LFUV? > Where to Test Such? **CEPC** FCC-ee China Europe Study at Z-Pole: Z Factory # Not only electroweak, but also flavor! | | Belle II | LHCb | $\operatorname{Tera-}Z$ | $10 \times \text{Tera-}Z$ | |---------------------------|----------------------|--------------------|-------------------------|---------------------------| | B^{0}, \bar{B}^{0} | 5.3×10^{10} | 6×10^{13} | 1.2×10^{11} | 1.2×10^{12} | | B^\pm | 5.6×10^{10} | 6×10^{13} | 1.2×10^{11} | 1.2×10^{12} | | $B_s,ar{B}_s$ | $5.7 imes 10^8$ | 2×10^{13} | 3.1×10^{10} | 3.1×10^{11} | | B_c^{\pm} | - | 4×10^{11} | 1.8×10^8 | 1.8×10^{9} | | $\Lambda_b,ar{\Lambda}_b$ | - | 2×10^{13} | 2.5×10^{10} | 2.5×10^{11} | #### Comparison With Other Facilities White: compared to LHCb; Yellow: compared to B-factories #### Motivation Set a baseline for the studies at Tera-Z. $$R_{H_c} = \frac{\text{Br}(H_b \to H_c \tau v)}{\text{Br}(H_b \to H_c \mu v)}$$ Vector $R_{J/\psi}$ and $R_{D_s^*}$ Pseudoscalar R_{D_s} Baryonic R_{Λ_c} Annihilation $\operatorname{Br}(B_c \to \tau v)$ [Zheng. et al.] **SU(2)** Other studies: $b \to s \tau \tau$ [Li and Liu (2021)] $b \to s \nu \nu$ [Li et al. (2022)] #### Motivation Set a baseline for the studies at Tera-Z. $$R_{H_c} = \frac{\text{Br}(H_b \to H_c \tau v)}{\text{Br}(H_b \to H_c \mu v)}$$ Vector $$R_{J/\psi}$$ and $R_{D_s^*}$ Pseudoscalar $$R_{D_s}$$ Baryonic $$R_{\Lambda}$$ $${ m Br}(B_c o au u)$$ [Zheng. et al.] **SU(2)** Other studies: $b \to s \tau \tau$ [Li and Liu (2021)] $b \to s v v$ [Li et al. (2022)] #### Signals • $$R_{J/\psi} = \frac{\text{Br}(B_c \to J/\psi \tau v)}{\text{Br}(B_c \to J/\psi \mu v)}$$ $$J/\psi \rightarrow \mu\mu, \tau \rightarrow \mu\nu\overline{\nu}$$ $$D_s^* \to D_s \gamma, D_s \to \phi(\to KK)\pi, \tau \to \mu\nu\overline{\nu}$$ $$R_{\Lambda_c} = \frac{\operatorname{Br}(\Lambda_b \to \Lambda_c \tau \nu)}{\operatorname{Br}(\Lambda_b \to \Lambda_c \mu \nu)}$$ $$\Lambda_c \to pK\pi, \tau \to \mu\nu\overline{\nu}$$ #### Possible Backgrounds "Wrongly" produced Muon "Wrongly" produced H_c + Others #### Results #### Conservative: no event-level involved. | Physical Quantity | | ty SM Value | Tera-Z | $10 \times \text{Tera-}Z$ | |-------------------|--------------------|---|-----------------------|---------------------------| | | $R_{J/\psi}$ | 0.289 | 2.89×10^{-2} | 9.15×10^{-3} | | | R_{D_s} | 0.393 | 4.15×10^{-3} | 1.31×10^{-3} | | | $R_{D_s^*}$ | 0.303 | 3.25×10^{-3} | 1.03×10^{-3} | | | R_{Λ_c} | 0.334 | 9.74×10^{-4} | 3.08×10^{-4} | | BR | $R(B_c o au u)$ | Zheng. et al.] $2.36 imes 10^{-2} \ [6]$ | 0.01 [6] | 3.16×10^{-3} | #### Relative Uncertainties at Tera-Z: $$O(0.1\%) - O(1\%)$$ #### Results Systematic ~ a factor of statistical rel. uncert. #### Results Systematic ~ a factor of statistical rel. uncert. Theoretical Aspects EFT method: Low-Energy EFT and SMEFT SM deviations: \tau sector only! RG Running and Matching #### Low-Energy EFT (LEFT) EFT Scale $$\sim m_b << m_Z$$ Examples: $$O_{S_R}^{\tau} = [\overline{c}P_R b][\overline{\tau}P_L v]$$ $$O_{V_L}^{\tau} = [\overline{c}\gamma^{\mu}P_Lb][\overline{\tau}\gamma_{\mu}P_Lv]$$ - Different Lorentz structures Scalar/Vector Mediator? - Independent, no correlation #### SMEFT (Up to Dim-6 Operators) $$\frac{1}{\Lambda^2}C_iO_i$$ $\frac{1}{\Lambda^2}C_iO_i$ NP Scale! $\sim \mathcal{O}(\text{TeV})$ Down Basis Expansion SU(2) $$[O_{lq}^{(1)}]_{3332} \qquad (\overline{\nu}\gamma^{\mu}P_{L}\nu + \overline{\tau}\gamma^{\mu}P_{L}\tau)(\overline{b}\gamma_{\mu}P_{L}s)$$ $$[O_{lq}^{(3)}]_{3332} \qquad 2V_{cs}^{*}(\overline{\nu}\gamma^{\mu}P_{L}\tau)(\overline{b}\gamma_{\mu}P_{L}c)$$ $$-(\overline{\nu}\gamma^{\mu}P_{L}\nu - \overline{\tau}\gamma^{\mu}P_{L}\tau)(\overline{b}\gamma_{\mu}P_{L}s)$$ - Correlation exists! - FCCC and FCNC constrained by same operators FCCC and FCNC both matter! Methodology STEP 1: Use MCMC to constrain LEFT WCs. 12 Observables: $b \rightarrow c\tau v$ $b \rightarrow s\tau \tau$ $b \rightarrow svv$ STEP 2: Run LEFT from b mass to Z mass. STEP 3: Tree-level matching at Z pole. $$\mathcal{L}_{\text{SMEFT}}(m_Z) = \mathcal{L}_{\text{LEFT}}(m_Z)$$ STEP 4: Run SMEFT from Z mass to SMEFT scale $\Lambda = 10 \, \text{TeV}$. #### SMEFT Constraints $10 \times [C_{\ell q}^{(1)}]_{3332} \quad 10 \times [C_{\ell q}^{(3)}]_{3332}$ $100\times [C_{\ell d}]_{3332}$ $[C_{qe}]_{3332}$ #### 9 operators in total $10\times [C_{\ell edq}]_{3332}$ $[C_{ledq}]_{3323}$ $10 \times [C_{lequ}^{(1)}]_{3332} \quad 10 \times [C_{lequ}^{(3)}]_{3332}$ Conclusions and Many Thanks Great advantages of Z factories: large luminosity, clean environment and etc. LFU being tested via precise measurements at Tera-Z. Multi-TeV NP being well constrained at Tera-Z. ## Back-Up #### Back-Up #### Preselection - The 3μ selection. The events with exactly three muon tracks (p_T > 0.1 GeV), and at least two of them sharing the same vertex, are selected. - The J/ψ selection. Two of the three muons need to be oppositely charged. Their momentum satisfies $|\vec{p}| > 2.5$ GeV. The leading transverse momentum must be > 0.75 GeV, while their total p_T must be > 1 GeV. These two muons form a common vertex, with its distance to the primary vertex (PV) > 0.1 mm. Besides, these two muons must have an invariant mass with $|m_{\mu^+\mu^-} m_{J/\psi}| < 27.5$ MeV for them to be considered as the J/ψ decay products. - The B_c⁺ selection. We divide the space into signal and tag hemispheres with a plane perpendicular to the displacement of the reconstructed J/ψ. The J/ψ vertex appears in the signal hemisphere. The unpaired third muon (μ₃) appears in the signal hemisphere also and has p_T > 0.375 GeV and |p̄| > 1.5 GeV. The 3μ system needs to have an invariant mass smaller than m_{B_c⁺}. #### Back-Up #### **BKG** Cascade backgrounds We refer to $H_b \to H_c \tau(\mu)\nu + X$ as "cascade backgrounds". Here H_b decays hadronically. In the simulation, any non-signal b-hadron events, if containing the $H_c + \mu$ produced not via semileptonic b-hadron decay at truth level, will be recognized as the cascade backgrounds. Combinatoric backgrounds We refer to $H_c\tau(\mu)\nu + X$ as "combinatoric backgrounds". Here H_c and $\tau(\mu)$ do not share a parent particle at the truth level. In the simulation, any reconstructed b-hadron events, if containing the $H_c + \mu$ but not identified as the inclusive and cascade backgrounds, will be recognized as the combinatoric backgrounds. Muon mis-ID backgrounds We refer to $H_c\mu_{\pi} + X$ as "muon mis-ID backgrounds". Here μ_{π} denotes the muon misidentified from pion. In the simulation, any $H_c\pi + X$ events will be recognized as the mis-ID background, weighted by the mis-ID probability $\epsilon_{\mu\pi} = 1\%$ as mentioned above. Fake H_c backgrounds We refer to $H_{c,F}\mu + X$ as "fake H_c backgrounds". Here $H_{c,F}$ denotes the fake H_c resonance, with the latter decaying as: $J/\psi \to \mu^+\mu^-$, $D_s^- \to K^+K^-\pi^-$, or $\Lambda_c^- \to \bar{p}K^+\pi^-$ in this study. These backgrounds represent the chance that the remnants for reconstructing H_c are not from H_c decays at the truth level. In the analysis, they appear as a continuous distribution of the reconstructed m_{H_c} . A good width resolution of resonance is thus essential for suppressing these backgrounds. In practice, the resonance width is determined by the resolution of the tracking system, given $\Gamma_{H_c} \lesssim \mathcal{O}(\text{keV}) \ll \Delta_{\text{track}}$, where Δ_{track} denotes the tracker smearing effect. We can estimate the level of these backgrounds from the relevant LHCb studies [7, 54, 55]. As summarized in Tab. 3, the rations of the H_c events and the continuous backgrounds in the resonant bin for the reconstructed m_{H_c} are at most a few percent. The reconstructed resonance widths are expected to be further improved at the future Z factories [7, 54, 55]. Furthermore, the fake H_c background sizes can easily be extrapolated by sideband m_{H_c} distributions. So the effect of this type of background can be safely neglected in R_{H_c} precision projections. #### Recent LHCb Measurements # Improved lepton universality measurements show agreement with the Standard Model $$R_{K,K^*} = \frac{\text{Br}(B^{(+,0)} \to K^{(+,*0)} \mu^+ \mu^-)}{\text{Br}(B^{(+,0)} \to K^{(+,*0)} e^+ e^-)}$$ Compatible with SM. #### Observables Used for MCMC Fitting [Zheng. et al.] [Li and Liu (2021)] [Li et al. (2022)] [Altmannshofer, W. et al. (2018)] [Aaij et al. (2018)] | | /3 6 /3 | | | | | |---|-----------------------------|------------------------------|---------------------------|-------------------|----------| | Physical Quantity | SM Value | $\mathrm{Tera}\text{-}Z$ | $10 \times \text{Tera-}Z$ | Belle II | LHCb | | $R_{J/\psi}$ | 0.289 | 2.89×10^{-2} | 9.15×10^{-3} | - | - | | R_{D_s} | 0.393 | 4.15×10^{-3} | 1.31×10^{-3} | - | - | | $R_{D_s^*}$ | 0.303 | 3.25×10^{-3} | 1.03×10^{-3} | - | - | | R_{Λ_c} | 0.334 | 9.74×10^{-4} | 3.08×10^{-4} | - | - | | $\mathrm{BR}(B_c o au u)$ | $2.36 \times 10^{-2} \ [6]$ | 0.01 [6] | 3.16×10^{-3} | - | - | | $BR(B^+ \to K^+ \tau^+ \tau^-)$ | 1.01×10^{-7} | 7.92 [7] | 2.48 [7] | 198 [11] | - | | $BR(B^0 \to K^{*0} \tau^+ \tau^-)$ | 0.825×10^{-7} | 10.3 [7] | 3.27 [7] | - | - | | $BR(B_s \to \phi \tau^+ \tau^-)$ | 0.777×10^{-7} | 24.5 [7] | 7.59 [7] | - | - | | $BR(B_s \to \tau^+ \tau^-)$ | 7.12×10^{-7} | 28.1 [7] | 8.85 [7] | - | 702 [12] | | $BR(B^+ \to K^+ \bar{\nu} \nu)$ | 4.6×10^{-6} [11] | - | - | 0.11 [11] | - | | $\mathrm{BR}(B^0 \to K^{*0} \bar{\nu} \nu)$ | 9.6×10^{-6} [11] | - | - | 0.096 [11] | - | | $\mathrm{BR}(B_s \to \phi \bar{\nu} \nu)$ | $9.93 \times 10^{-6} [77]$ | $1.78 \times 10^{-2} \ [77]$ | 5.63×10^{-3} | - | - | # 12 observables: 9 effective, some others similar