Anomaly Mediated Supersymmetry Breaking for Chiral Gauge Theories
BETHANY SUTER, UC BERKELEY
MAY 8, PHENO 2023
COLLABORATORS: HITOSHI MURAYAMA, JACOB LEEDOM

Outline

- Background \& Why AMSB?
- How AMSB works
- Chiral gauge theory dynamics

Calculating Chiral Dynamics

Lattice Calculations

- Simulates nonperturbative gauge interactions on a lattice
- Unrealistic due to fermion doubling problem

Tumbling

- Postulates condensates that successively break symmetry down to QCD-like theories
- Is still a conjecture

SUSY

- Dynamics are often fully solvable due to holomorphy
- We haven't found SUSY, so we need results for the non-SUSY theories

SUSY
 Breaking

Most methods

Lack of	Phase transitions	Different
theoretical	at the dynamical	universality
control	scale	classes

at the dynamical scale

Anomaly mediated SUSY breaking (AMSB)

gauginos		
become massive	UV insensitivity	Same universality class?

Squarks \& gauginos become massive

Same universality class?

- Additional tree level term in the potential

$$
\mathcal{L}_{\text {tree }}=m\left(\phi_{i} \frac{\partial W}{\partial \phi_{i}}-3 W\right)+\text { c.c. } \quad 2104.01179
$$

- Loop level piece in trilinear couplings, and scalar \& gaugino masses

$$
\begin{gathered}
m_{\lambda}(\mu)=-\frac{\beta\left(g^{2}\right)}{2 g^{2}}(\mu) m \quad m_{i}^{2}(\mu)=-\frac{1}{4} \dot{\gamma}_{i}(\mu) m^{2} \\
A_{i j k}(\mu)=-\frac{1}{2}\left(\gamma_{i}+\gamma_{j}+\gamma_{k}\right)(\mu) m
\end{gathered}
$$

- All terms determined from energetically local physics \rightarrow UV insensitivity
- In the asymptotically free limit, $m_{i}^{2}>0$, the theory is stabilized

SU(N) with an Antisymmetric Tensor

- Large class of chiral gauge theories
- UV: An antisymmetric tensor A, F fundamentals, and N+F-4 antifundamentals
- IR: several composite fields H, $M, \& B^{k}$
- Some of the theories are potential GUTs
- Important "electric" and "magnetic" dualities

	SU (N)	SU (F)	SU (N+F-4)	$\mathrm{U}(1)_{1}$	$\mathrm{U}(1)_{2}$	$\mathrm{U}(1)_{\mathrm{R}}$
A	$\binom{N}{2}$	1	1	0	-2 F	$\frac{-12}{N}$
F	N	F	1	1	$N-F$	$2-\frac{6}{N}$
$\overline{\mathrm{F}}$	N*	1	$N+\mathrm{F}-4$	$\frac{-\mathrm{F}}{\mathrm{N}+\mathrm{F}-4}$	F	$\frac{6}{N}$
$H=A \bar{F} \bar{F}$	1	1	$\binom{N+F-4}{2}$	$\frac{-2 \mathrm{~F}}{\mathrm{~N}+\mathrm{F}-4}$	0	0
$M=\bar{F} F$	1	F	N+F-4	$\frac{\mathrm{N}-4}{\mathrm{~N}+\mathrm{F}-4}$	N	2
$B_{k}=F^{k} A^{(N-k) / 2}$	1	$\binom{$ F }{ k }	1	k	($\mathrm{k}-\mathrm{F}$) N	2k-6
$\bar{B}=\bar{F}^{N}(F \geq 4)$	1	1	$\binom{N+F-4}{N}$	$\frac{-4 \mathrm{~F}}{\mathrm{~N}+\mathrm{F}-4}$	4 F	$\frac{24}{N}$

SU(N) \& F=1 Superpotentials

- The superpotential is generated by gluino condensation in an $\mathrm{Sp}(1)$ subgroup of SU(N)

$$
\begin{gathered}
W=\left(\frac{\Lambda^{2 N+2}}{\left(B_{1} P f H\right)}\right)^{1 / 2}(\text { for odd } \mathrm{N}) \\
W=\left(\frac{\Lambda^{2 N+2}}{\left(B_{0} M H^{(N-4) / 2}\right)}\right)^{1 / 2}(\text { for even } \mathrm{N})
\end{gathered}
$$

- Since $\mathrm{F}=1<3$, the potential has runaway behavior and the coupling is small, so we describe the fields in terms of the UV fields

General Vacuum: Even N

- We studied general D-flat directions \& found the new minimum along this direction
- The general form of the vacuum occurs when $F, \bar{F}, \& A$ take this form where $\rho=\left(\frac{(N-1) \Lambda^{N+1}}{\left[2^{2 N+3} k!!!\right]^{1 / 2}(N+1) m}\right)^{1 / N}$ for even N

$$
\begin{gathered}
\mathcal{R}_{n}=\left(\begin{array}{cc}
0 & \rho^{n} \\
-\rho^{n} & 0
\end{array}\right) \\
k=\frac{N}{2}, l=\frac{N-4}{2}
\end{gathered}
$$

$$
F=\sqrt{2}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\rho \\
0 \\
0 \\
0
\end{array}\right] \quad \bar{F}=\sqrt{2}\left[\begin{array}{cccccc}
\rho & & 0 & 0 & 0 & 0 \\
& \ddots & & 0 & 0 & 0 \\
0 & & \rho & 0 & 0 & 0
\end{array}\right] \quad A=\frac{1}{\sqrt{2}}\left[\begin{array}{ccccc}
2 \mathcal{R}_{1} & 0 & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & \ddots & 2 \mathcal{R}_{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \sqrt{2} \mathcal{R}_{1} & 0 \\
0 & \ldots & \ldots & 0 & \sqrt{2} \mathcal{R}_{1}
\end{array}\right]
$$

Broken

Symmetries:

Even N

- SU(N-3) breaks to Sp(N-4)
- $U(1)_{R}$ is broken by the Weyl compensator field
> One U(1) charge remains
$Q_{3}=Q_{S U(N-3)}+(N-3) Q_{1}$

	$S U(N)$	$S U(N-3)$	$U(1)_{1}$	$U(1)_{2}$	$U(1)_{3}$	
A	$\binom{N}{2}$	1	0	-2	0	
F	N	1	1	$N-1$	$N-3$	
\bar{F}	N^{*}	$N-3$	$\frac{-1}{N-3}$	1	0 $3-N(i \neq N-3)$ $(i=N-3)$	
$H=A \bar{F} \bar{F}$	1	$\binom{N-3}{2}$	$\frac{-2}{N-3}$	0	0 $6-2 N(i, j \neq N-3)$ $(i \\| j=N-3)$	
$M=\bar{F} F$	1	$N-3$	$\frac{N-4}{N-3}$	N	$N-3(i \neq N-3)$ 0 $(i=N-3)$	
$B_{0}=F^{0} A^{N / 2}$	1	1	0	$-N$	0	

- Fermions all gain masses
- \dagger 'Hooft anomalies all vanish

$$
\begin{aligned}
& \operatorname{Tr}\left(\mathrm{U}(1)_{3}\right): 0+N(N-3)+N(3-N)=0 \\
& \operatorname{Tr}\left(\mathrm{U}(1)_{3}^{3}\right): 0+N(N-3)^{3}+N(3-N)^{3}=0
\end{aligned}
$$

- \# of massless scalars and pseudoscalars varies with N
- Matches number of broken gauge and global symmetries
- Passes the sum rule for canonical Kahler potentials

$$
\operatorname{Str}\left(M^{2}\right)=-2 M_{f}^{2}+M_{b}^{2}=0
$$

General Vacuum: Odd N

- We studied general D-flat directions \& found the new minimum along this direction
- The general form of the vacuum occurs when $F, \bar{F}, \& A$ take this form where $\rho=\left(\frac{(N-1) \Lambda^{N+1}}{\left[2^{(2 N+3) / 2} k!\right]^{1 / 2}(N+1) m}\right)^{1 / N}$ for odd N

$$
\left.\begin{array}{c}
\mathcal{R}_{n}=\left(\begin{array}{cc}
0 & \rho^{n} \\
-\rho^{n} & 0
\end{array}\right) \quad F=\sqrt{2}\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\rho
\end{array}\right] \quad \bar{F}=\sqrt{2}\left[\begin{array}{ccccc}
\rho & 0 & 0 & 0 & 0 \\
& \ddots & 0 & 0 & 0 \\
0 & & \rho & 0 & 0
\end{array}\right] \quad 0
\end{array}\right] \quad A=\frac{1}{\sqrt{2}}\left[\begin{array}{ccccc}
2 \mathcal{R}_{1} & 0 & \ldots & \ldots & 0 \\
0 & \ddots & \ddots & & \vdots \\
\vdots & \ddots & 2 \mathcal{R}_{1} & \ddots & \vdots \\
\vdots & & \ddots & \sqrt{2} \mathcal{R}_{1} & 0 \\
0 & \ldots & \ldots & 0 & 0
\end{array}\right]
$$

Broken

Symmetries:

Odd N

- SU(N-3) breaks to Sp(N-3)
- $U(1)_{R}$ is broken by the Weyl compensator field
- $\mathrm{U}(1)_{1}$ is broken by B_{1}
$\downarrow \mathrm{U}(1)_{2}$ charge remains

	$\mathrm{SU}(\mathrm{N})$	$\mathrm{SU}(\mathrm{N}-3)$	$\mathrm{U}(1)_{1}$	$\mathrm{U}(1)_{2}$	$\mathrm{U}(1)_{\mathrm{R}}$
A	$\binom{\mathrm{N}}{2}$	1	0	-2	$\frac{-12}{\mathrm{~N}}$
F	N	1	1	$\mathrm{~N}-1$	$2-\frac{6}{N}$
$\overline{\mathrm{~F}}$	$\mathrm{~N}^{\star}$	$\mathrm{N}-3$	$\frac{-1}{\mathrm{~N}-3}$	1	$\frac{6}{N}$
$\mathrm{H}=\mathrm{A} \overline{\mathrm{F}} \overline{\mathrm{F}}$	1	$\binom{\mathrm{~N}-3}{2}$	$\frac{-2}{\mathrm{~N}-3}$	0	0
$\mathrm{M}=\overline{\mathrm{F}} \mathrm{F}$	1	$\mathrm{~N}-3$	$\frac{\mathrm{~N}-4}{\mathrm{~N}-3}$	N	2
$\mathrm{~B}_{1}=\mathrm{F}^{1} \mathrm{~A}^{(\mathrm{N-1)/2}}$	1	1	1	0	-4

- Several massless fermions
- † 'Hooft anomalies match

$$
\begin{gathered}
\operatorname{Tr}\left(\mathrm{U}(1)_{3}\right): \frac{N(N-1)}{2}(-2)+N(N-1)+N(N-3)(1) \\
\quad=(N-3) N \\
\operatorname{Tr}\left(\mathrm{U}(1)_{3}^{3}\right): \quad \begin{aligned}
0+ & N(N-1)^{3}+N(N-3) 1^{3} \\
& =(N-3) N^{3}
\end{aligned}
\end{gathered}
$$

- \# of massless scalars and pseudoscalars varies with N
- Matches number of broken gauge and global symmetries
- Passes the sum rule for canonical Kahler potentials
- $\operatorname{Str}\left(M^{2}\right)=-2 M_{f}^{2}+M_{b}^{2}=0$

Continuing Work

- Finish similar calculations for $\mathrm{F}=2$
- $\mathrm{F}=3$ and above are in the confining phase
- Can calculate using the composite fields $\mathrm{M}, \mathrm{H}, \mathrm{B}_{\mathrm{i}}$
- Examine the electric-magnetic duality

Main Takeaways

- AMSB is a great method for approaching many otherwise insolvable theories with strong dynamics
- AMSB only depends on physics at the energy scales of interest: UV insensitivity
- AMSB passes many nontrivial tests, such as t'Hooft anomaly matching, sum rules and counting of massless particles

Questions?

Backup Slides

Why Anomaly Mediation?

Understanding Non-Abelian Gauge Theories

High temperature superconductors

Strong interactions in particle physics

Anomaly Mediation: A Derivation

Anomaly Mediation

- We introduce a Weyl compensator or a "superspacetime background"

$$
\mathcal{E}=1+\theta^{2} m
$$

- All SUSY breaking encoded in m and thus in \mathcal{E}
- It is inserted into the SUSY Lagrangian as:

$$
\mathcal{L}_{\text {tree }}=\int d^{4} \theta \mathcal{E}^{*} \mathcal{E} K-\int \mathrm{d}^{2} \theta \mathcal{E}^{3} W
$$

- If no mass term, can be removed by conformal transformation $\phi_{i} \rightarrow \mathcal{E}^{-1} \phi_{i}$

$$
\begin{aligned}
\mathcal{L}_{\text {tree }} & =\int d^{4} \theta \mathcal{E}^{*} \mathcal{E} \phi_{i}^{*} \phi_{i}-\int \mathrm{d}^{2} \theta \mathcal{E}^{3} \lambda \phi^{3}+\text { c.c. } \\
& \rightarrow \int d^{4} \theta \phi_{i}^{*} \phi_{i}-\int \mathrm{d}^{2} \theta \lambda \phi^{3}+\text { c.c. }
\end{aligned}
$$

Anomaly Mediation

- If mass term, dimensionful parameters get SUSY breaking
- For example

$$
\begin{aligned}
& \mathcal{L}_{\text {tree }}=\int d^{4} \theta \mathcal{E}^{*} \mathcal{E} \phi_{i}^{*} \phi_{i}-\int \mathrm{d}^{2} \theta \mathcal{E}^{3}\left(\frac{1}{2} M \phi_{i}^{2}+\lambda \phi^{3}\right)+\text { c.c. } \\
& \quad \rightarrow \mathcal{L}_{\text {tree }}=\int d^{4} \theta \phi_{i}^{*} \phi_{i}-\int \mathrm{d}^{2} \theta\left(\frac{1}{2} M \mathcal{E} \phi_{i}^{2}+\lambda \phi^{3}\right)+c . c .
\end{aligned}
$$

- After integrating over the SUSY Grassmann coordinates, we get

$$
\mathcal{L}_{\text {tree }}=m\left(\phi_{i} \frac{\partial W}{\partial \phi_{i}}-3 W\right)+c . c .
$$

Anomaly Mediation

- We get additional SUSY breaking at loop level from cutoff scale

$$
\mathrm{Z}\left(\frac{\mu}{M}\right) \rightarrow \mathrm{Z}\left(\frac{\mu}{M \mathcal{E}}\right)=\mathrm{Z}\left(1+\gamma \frac{1}{2} \ln \frac{\mu^{2}}{M^{*} \mathcal{E}^{*} M \mathcal{E}}+\frac{1}{2} \dot{\gamma} \frac{1}{4} \ln ^{2} \frac{\mu^{2}}{M^{*} \mathcal{E}^{*} M \mathcal{E}}+\ldots\right)
$$

- The contribution to the potential is

$$
\int d^{4} \theta \mathrm{Z} \phi_{i}^{*} \phi_{i}=\mathrm{Z}\left(F^{*} F+\gamma \frac{1}{2}\left(m^{*} \phi_{i}^{*} F+m \phi_{i} F^{*}\right)+\frac{1}{2} \dot{\gamma} m^{*} m \phi_{i}^{*} \phi_{i}\right)
$$

- Integrating the auxiliary field F , we find

$$
V=-\frac{1}{4} \dot{\gamma} m^{*} m \phi_{i}^{*} \phi_{i}-\frac{1}{2}\left(\gamma_{i}+\gamma_{j}+\gamma_{k}\right) m \lambda_{i j k} \phi_{i} \phi_{j} \phi_{k}+c . c .
$$

Anomaly Mediation

- The coupling constant also shifts

$$
\frac{1}{g^{2}}\left(\frac{\mu}{M}\right) \rightarrow \frac{1}{\mathrm{~g}^{2}}\left(\frac{\mu}{M \mathcal{E}}\right)=\frac{1}{g^{2}}-\theta^{2} \frac{\beta\left(\mathrm{~g}^{2}\right)}{\mathrm{g}^{4}} m
$$

- Integrating θ, we find

$$
\int d^{2} \theta \frac{1}{\mathrm{~g}^{2}}\left(\frac{\mu}{M \Phi}\right) w_{\alpha} w^{\alpha} \supset-\frac{\beta\left(\mathrm{g}^{2}\right)}{4 \mathrm{~g}^{4}} m \lambda \lambda
$$

- And thus, we find

$$
m_{\lambda}=-\frac{\beta\left(\mathrm{g}^{2}\right)}{2 \mathrm{~g}^{2}} m
$$

Chiral Gauge Theory Dynamics

D-flat Condition

- Out of $\binom{N}{2}+\mathrm{N}(\mathrm{N}-3)+\mathrm{N}$ fields, $\left(N^{2}-1\right)-\left(2^{2}-1\right)$ are eaten, leaving $\frac{N^{2}}{2}-\frac{5 N}{2}+4$ D-flat directions which correspond to the gauge invariants $\mathrm{M}, \mathrm{H}, \mathrm{B}_{0}$
- The UV fields must be chosen to satisfy the D-flat condition

$$
A^{\dagger} A+A A^{\dagger}+F F^{\dagger}-\bar{F} \bar{F}^{\dagger}=\mathrm{a} \mathrm{I} \text { (where a is a constant) }
$$

- Due to gauge freedom and the D-flat condition, we are left with only N -2 independent parameters
- We studied general D-flat directions to find a well-defined minimum

Results

- Large class of chiral gauge theories
hep-th/9510148
- With AMSB, we can find:
- Vacuum structure
- Broken/remaining symmetries
- Fermion \& scalar masses
- t'Hooft anomaly matching conditions

