Anomaly Mediated Supersymmetry Breaking for Chiral Gauge Theories

BETHANY SUTER, UC BERKELEY

MAY 8, PHENO 2023

COLLABORATORS: HITOSHI MURAYAMA, JACOB LEEDOM

Outline

- Background & Why AMSB?
- ► How AMSB works
- Chiral gauge theory dynamics

Calculating Chiral Dynamics

Lattice Calculations

- Simulates nonperturbative gauge interactions on a lattice
- Unrealistic due to fermion doubling problem

Tumbling

- Postulates condensates that successively break symmetry down to QCD-like theories
- Is still a conjecture

SUSY

- Dynamics are often fully solvable due to holomorphy
- We haven't found SUSY, so we need results for the non-SUSY theories

SUSY Breaking

UV insensitivity

gauginos

become massive

Same universality

class?

AMSB Summary

Additional tree level term in the potential

$$\mathcal{L}_{\text{tree}} = m \left(\phi_i \frac{\partial W}{\partial \phi_i} - 3W \right) + c.c.$$
 2104.01179

 Loop level piece in trilinear couplings, and scalar & gaugino masses

$$m_{\lambda}(\mu) = -\frac{\beta(g^2)}{2g^2}(\mu)m$$
 $m_i^2(\mu) = -\frac{1}{4}\dot{\gamma}_i(\mu)m^2$ $A_{ijk}(\mu) = -\frac{1}{2}(\gamma_i + \gamma_j + \gamma_k)(\mu)m$

- ► All terms determined from energetically local physics → UV insensitivity
- In the asymptotically free limit, $m_i^2 > 0$, the theory is stabilized

SU(N) with an Antisymmetric Tensor

- Large class of chiral gauge theories
- UV: An antisymmetric tensor
 A, F fundamentals, and N+F-4
 antifundamentals
- IR: several composite fields H,
 M, & B^k
- Some of the theories are potential GUTs
- Important "electric" and "magnetic" dualities

	SU (N)	SU (F)	$SU \ (N+F-4)$	U (1) ₁	U (1) ₂	U (1) _R
А	$\begin{pmatrix} N \\ 2 \end{pmatrix}$	1	1	0	– 2 F	<u>-12</u> N
F	N	F	1	1	N – F	$2-\frac{6}{N}$
F	N*	1	N + F – 4	F N+F−4	F	<u>6</u> N
$H = A \overline{F} \overline{F}$	1	1	$\left(\begin{array}{c} N+F-4\\2\end{array}\right)$	2 F N+F−4	0	0
$M = \overline{F} F$	1	F	N + F – 4	$\frac{N-4}{N+F-4}$	N	2
$B_k = F^k A^{(N-k)/2}$	1	(F) k	1	k	(k - F) N	2 k – 6
$\overline{B} = \overline{F}^N \ (F \ge 4)$	1	1	$\left(\begin{array}{c} N+F-4\\ N \end{array}\right)$	-4 F N+F-4	4 F	24 N

SU(N) & F=1 Superpotentials

 The superpotential is generated by gluino condensation in an Sp(1) subgroup of SU(N)

$$W = \left(\frac{\Lambda^{2N+2}}{(B_1 P f H)}\right)^{1/2} \text{ (for odd N)}$$

$$W = \left(\frac{\Lambda^{2N+2}}{(B_0 M H^{(N-4)/2})}\right)^{1/2} \text{ (for even N)}$$

Since F = 1 < 3, the potential has runaway behavior and the coupling is small, so we describe the fields in terms of the UV fields

General Vacuum: Even N

- ▶ We studied general D-flat directions & found the new minimum along this direction
- ▶ The general form of the vacuum occurs when F, \overline{F} , & A take this form where

$$\rho = \left(\frac{(N-1)\wedge^{N+1}}{[2^{2N+3}k!l!]^{1/2}(N+1)m}\right)^{1/N} \text{ for even N}$$

$$\mathcal{R}_{n} = \begin{pmatrix} 0 & \rho^{n} \\ -\rho^{n} & 0 \end{pmatrix} \qquad F = \sqrt{2} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \rho \\ 0 \\ 0 \end{bmatrix} \qquad \overline{F} = \sqrt{2} \begin{bmatrix} \rho & 0 & 0 & 0 & 0 \\ \vdots & \ddots & 0 & 0 & 0 \\ 0 & \rho & 0 & 0 & 0 \end{bmatrix} \qquad A = \frac{1}{\sqrt{2}} \begin{bmatrix} 2\mathcal{R}_{1} & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 2\mathcal{R}_{1} & \ddots & \vdots \\ \vdots & \ddots & 2\mathcal{R}_{1} & \ddots & \vdots \\ \vdots & \ddots & \ddots & \sqrt{2}\mathcal{R}_{1} & 0 \\ 0 & \dots & \dots & 0 & \sqrt{2}\mathcal{R}_{1} \end{bmatrix}$$

Broken Symmetries: Even N

- ► SU(N-3) breaks to Sp(N-4)
- $U(1)_R$ is broken by the Weyl compensator field
- One U(1) charge remains

$$Q_3 = Q_{SU(N-3)} + (N-3)Q_1$$

	SU(N)	SU(N-3)	$U(1)_1$	$U(1)_2$	$U(1)_3$	
A	$\binom{N}{2}$	1	0	-2	0	
F	N	1	1	N-1	N - 3	
$ar{F}$	N^*	N-3	$\frac{-1}{N-3}$	1	$ \begin{array}{ccc} 0 & (i \neq N - 3) \\ 3 - N & (i = N - 3) \end{array} $	
$H = A\bar{F}\bar{F}$	1	$\binom{N-3}{2}$	$\frac{-2}{N-3}$	0	$ \begin{vmatrix} 0 & (i, j \neq N - 3) \\ 6 - 2N & (i j = N - 3) \end{vmatrix} $	
$M = \bar{F}F$	1	N-3	$\frac{N-4}{N-3}$	N	$N-3 \ (i \neq N-3)$ 0 $(i = N-3)$	
$B_0 = F^0 A^{N/2}$	1	1	0	-N	0	

Particle Masses: Even N

- Fermions all gain masses
 - † 'Hooft anomalies all vanish

Tr(U(1)₃):
$$0 + N(N - 3) + N(3 - N) = 0$$

Tr(U(1)₃): $0 + N(N - 3)^3 + N(3 - N)^3 = 0$

- # of massless scalars and pseudoscalars varies with N
 - Matches number of broken gauge and global symmetries
- Passes the sum rule for canonical Kahler potentials
 - $\operatorname{Str}(M^2) = -2M_f^2 + M_b^2 = 0$

General Vacuum: Odd N

- ▶ We studied general D-flat directions & found the new minimum along this direction
- ▶ The general form of the vacuum occurs when F, \overline{F} , & A take this form where

$$\rho = \left(\frac{(N-1)\wedge^{N+1}}{\left[2^{(2N+3)/2}k!\right]^{1/2}(N+1)m}\right)^{1/N} \text{ for odd N}$$

$$\mathcal{R}_{n} = \begin{pmatrix} 0 & \rho^{n} \\ -\rho^{n} & 0 \end{pmatrix} \qquad F = \sqrt{2} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \rho \end{bmatrix} \quad \overline{F} = \sqrt{2} \begin{bmatrix} \rho & 0 & 0 & 0 & 0 \\ & \ddots & & 0 & 0 & 0 \\ & & \rho & 0 & 0 & 0 \end{bmatrix} \quad A = \frac{1}{\sqrt{2}} \begin{bmatrix} 2\mathcal{R}_{1} & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & \ddots & 2\mathcal{R}_{1} & \ddots & \vdots \\ \vdots & & \ddots & \sqrt{2}\mathcal{R}_{1} & 0 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix}$$

$$k = \frac{N}{2}$$

Broken Symmetries: Odd N

- ► SU(N-3) breaks to Sp(N-3)
- $U(1)_R$ is broken by the Weyl compensator field
- \triangleright U(1)₁ is broken by B_1
- ▶ U(1)₂ charge remains

SU (N) SU(N-3) $U(1)_{1}$ $U(1)_{2}$ $U(1)_R$ Ν -12 N Α 0 **-2** 2 F N-1N 1 $\frac{-1}{N\!-\!3}$ $\overline{\mathsf{F}}$ N^* N-3N - 3 $H = A \overline{F} \overline{F}$ 0 0 N-32 $\frac{N-4}{}$ $M=\,\overline{F}\,\,F$ N-32 1 Ν N-3 $B_1 = \overline{F^1 A^{(N-1)/2}}$ 1 0 **-4**

Particle Masses: Odd N

- Several massless fermions
 - t 'Hooft anomalies match

Tr(U(1)₃):
$$\frac{N(N-1)}{2}(-2) + N(N-1) + N(N-3)(1)$$

= $(N-3)N$
Tr(U(1)₃): $0 + N(N-1)^3 + N(N-3)1^3$
= $(N-3)N^3$

- # of massless scalars and pseudoscalars varies with N
 - Matches number of broken gauge and global symmetries
- Passes the sum rule for canonical Kahler potentials

Continuing Work

- Finish similar calculations for F=2
- ► F=3 and above are in the confining phase
 - Can calculate using the composite fields M, H, B_i
- Examine the electric-magnetic duality

Main Takeaways

- AMSB is a great method for approaching many otherwise insolvable theories with strong dynamics
- AMSB only depends on physics at the energy scales of interest: UV insensitivity
- AMSB passes many nontrivial tests, such as t 'Hooft anomaly matching, sum rules and counting of massless particles

Questions?

Backup Slides

Why Anomaly Mediation?

Understanding Non-Abelian Gauge Theories

High temperature superconductors

Strong interactions in particle physics

Anomaly Mediation: A Derivation

We introduce a Weyl compensator or a "superspacetime background"

$$\mathcal{E} = 1 + \theta^2 m$$

- \blacktriangleright All SUSY breaking encoded in m and thus in $oldsymbol{\mathcal{E}}$
- It is inserted into the SUSY Lagrangian as:

$$\mathcal{L}_{tree} = \int d^4 \theta \; \mathcal{E}^* \mathcal{E} K - \int d^2 \theta \; \mathcal{E}^3 W$$

ullet If no mass term, can be removed by conformal transformation $\phi_i o {\mathcal E}^{-1} \phi_i$

$$\mathcal{L}_{tree} = \int d^4\theta \, \mathcal{E}^* \mathcal{E} \phi_i^* \phi_i - \int d^2\theta \, \mathcal{E}^3 \lambda \phi^3 + c.c.$$

$$\rightarrow \int d^4\theta \, \phi_i^* \phi_i - \int d^2\theta \, \lambda \phi^3 + c.c.$$

- ▶ If mass term, dimensionful parameters get SUSY breaking
- For example

$$\mathcal{L}_{tree} = \int d^4\theta \, \mathcal{E}^* \mathcal{E} \, \phi_i^* \phi_i - \int d^2\theta \, \mathcal{E}^3 \left(\frac{1}{2} M \phi_i^2 + \lambda \phi^3 \right) + c.c.$$

$$\rightarrow \mathcal{L}_{tree} = \int d^4\theta \, \phi_i^* \phi_i - \int d^2\theta \left(\frac{1}{2} M \mathcal{E} \phi_i^2 + \lambda \phi^3 \right) + c.c.$$

After integrating over the SUSY Grassmann coordinates, we get

$$\mathcal{L}_{\text{tree}} = m \left(\phi_i \frac{\partial W}{\partial \phi_i} - 3W \right) + c.c.$$

We get additional SUSY breaking at loop level from cutoff scale

$$Z\left(\frac{\mu}{M}\right) \to Z\left(\frac{\mu}{M\mathcal{E}}\right) = Z\left(1 + \gamma \frac{1}{2} \ln \frac{\mu^2}{M^*\mathcal{E}^*M\mathcal{E}} + \frac{1}{2} \dot{\gamma} \frac{1}{4} \ln^2 \frac{\mu^2}{M^*\mathcal{E}^*M\mathcal{E}} + \dots\right)$$

► The contribution to the potential is

$$\int d^4\theta \, Z \phi_i^* \phi_i = Z \left(F^* F + \gamma \frac{1}{2} (m^* \phi_i^* F + m \phi_i F^*) + \frac{1}{2} \dot{\gamma} m^* m \phi_i^* \phi_i \right)$$

Integrating the auxiliary field F, we find

$$V = -\frac{1}{4}\dot{\gamma}m^*m\phi_i^*\phi_i - \frac{1}{2}(\gamma_i + \gamma_j + \gamma_k)m\lambda_{ijk}\phi_i\phi_j\phi_k + c.c.$$

▶ The coupling constant also shifts

$$\frac{1}{g^2} \left(\frac{\mu}{M} \right) \to \frac{1}{g^2} \left(\frac{\mu}{M \mathcal{E}} \right) = \frac{1}{g^2} - \theta^2 \frac{\beta(g^2)}{g^4} m$$

▶ Integrating θ , we find

$$\int d^2\theta \, \frac{1}{g^2} \left(\frac{\mu}{M\Phi} \right) w_{\alpha} w^{\alpha} \supset -\frac{\beta(g^2)}{4g^4} m \lambda \lambda$$

And thus, we find

$$m_{\lambda} = -\frac{\beta(g^2)}{2g^2} m$$

Chiral Gauge Theory Dynamics

D-flat Condition

- Out of $\binom{N}{2}$ + N(N 3) + N fields, $(N^2-1)-(2^2-1)$ are eaten, leaving $\frac{N^2}{2}-\frac{5N}{2}+4$ D-flat directions which correspond to the gauge invariants M, H, B₀
- The UV fields must be chosen to satisfy the D-flat condition $A^{\dagger}A + AA^{\dagger} + FF^{\dagger} \bar{F}\bar{F}^{\dagger} = a I$ (where a is a constant)
- Due to gauge freedom and the D-flat condition, we are left with only N-2 independent parameters
- We studied general D-flat directions to find a well-defined minimum

Results

- Large class of chiral gauge theories
- With AMSB, we can find:
 - Vacuum structure
 - Broken/remaining symmetries
 - Fermion & scalar masses
 - t'Hooft anomaly matching conditions

hep-th/9510148