Inelastic Dipole Dark Matter at FASER

2301.05252

Pheno 2023 Symposium

Keith Dienes, Jonathan Feng, Fei Huang, Seung Lee, Brooks Thomas

Max Fieg: mfieg@uci.edu

ForwArd Search ExpeRiment (FASER)

• 500m from ATLAS IP

 large flux of particles produced in the forward direction:

 $\nu, \pi^0, K, D^0, \rho, J/\psi ..., A'? \chi? a?$

• Very low backgrounds: μ, ν

 Proposed upgrade, FASER2, along with the rest of the Forward Physics Facility

Recent FASER Results

Dark Photon Analysis $\pi^0, \eta, \eta' \rightarrow A'\gamma, A' \rightarrow e^+e^-$

$$N_{bgd} \approx 10^{-3}$$
 $N_{sig} = 0 \otimes$

No signal events, resulting in exclusion.

What other models / signatures can we look for?

What models make motivated targets for FASER?

Need an LLP

Novel SM signature

Uniquely suited for FASER (ideally)

Bonus: can describe DM?

$$\mathcal{L} \supset \frac{1}{\Lambda_m} \bar{\chi}_1 \sigma^{\mu\nu} \chi_0 F_{\mu\nu} + h.c.$$

$$rac{m_1 - m_0}{m_0} \equiv \Delta$$
 . In the same m_0

$$\mathcal{L} \supset \frac{1}{\Lambda_m} \bar{\chi}_1 \sigma^{\mu\nu} \chi_0 F_{\mu\nu} + h.c.$$

$$\Gamma \sim \frac{m_1^3 \Delta^3}{\Lambda_m^2}$$

$$rac{m_1 - m_0}{m_0} \equiv \Delta$$
 . In the contraction m_0

$$rac{m_1 - m_0}{m_0} \equiv \Delta$$
 . In the second second

$$rac{m_1 - m_0}{m_0} \equiv \Delta$$
 . In the second second

We look at the minimal model

$$\frac{m_1 - m_0}{m_0} \equiv \Delta \quad \text{1303.03000}$$

Can also describe dark matter!

- Abundance through freezeout
- Direct detection evaded with sufficient Δ

We look at the minimal model

Exploit LHC boost

$$E_{\gamma} \approx 100 \text{ MeV} \frac{E\chi_1}{100 \text{ GeV}} \frac{\Delta}{0.001}$$

Can also describe dark matter!

- Abundance through freezeout
- Direct detection evaded with sufficient Δ

How to produce it?

Plenty of mesons produced in the forward direction during Run3 and HL-LHC

$$\frac{10^{16}\pi^0, \, 10^{15}\,\eta\,, 10^{12}\rho\,, 10^{11}J/\psi\dots}{\text{Meson mass}} \qquad \qquad \begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \end{array}$$

How to produce it?

Plenty of mesons produced in the forward direction during Run3 and HL-LHC

$$\frac{10^{16}\pi^0, \, 10^{15}\,\eta\,, 10^{12}\rho\,, 10^{11}J/\psi\dots}{\text{Meson mass}} \qquad \qquad \begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \end{array}$$

Heavier mesons have lower flux but this is compensated by the branching fraction

$$BF(M \to \chi_1 \chi_0) \sim \frac{m_M^2}{\Lambda^2}$$

How to produce it?

Plenty of mesons produced in the forward direction during Run3 and HL-LHC

$$\frac{10^{16}\pi^0, \ 10^{15} \, \eta \,, 10^{12}\rho \,, 10^{11} J/\psi \dots}{\text{Meson mass}} \qquad \qquad \begin{array}{c} \chi_1 \\ \chi_2 \\ \chi_3 \end{array}$$

Heavier mesons have lower flux but this is compensated by the branching fraction

$$BF(M \to \chi_1 \chi_0) \sim \frac{m_M^2}{\Lambda^2}$$

Heavier mesons impart larger p_T , so larger FASER2 will better exploit these

$$R_{FASER} = 10 \ cm_{RFASER2} = 1m$$

χ Production

• Normalized production: $pp \to M \to \chi_0 \chi_1(\gamma)$ in FASER ROI for magnetic (solid) and electric (dashed) dipole operators

Can reach O(1) GeV

EDM case shows pwave suppression

What is the signal and background?

What is the signal?

- Photon hits in the calorimeter with $E_{\gamma} \approx 10~{\rm GeV} \times \frac{\Delta}{0.01}$
- Photon ID with pre-shower detector

Backgrounds?

 μ : Either vetoed or produce O(10) MeV deposits

We take $E_{\gamma} > 300 \text{ MeV}$

 ν : Vetoed by preshower and trackers

What about dark matter?

Dark Matter

Splitting well-above direct detection reach

$$\frac{E_{\rm kinetic}}{m_1 - m_0} \sim \frac{10^{-6}}{\Delta} \ll 1$$

Dark Matter

Freezeout process governed by (co-)annihilation processes

Less Λ suppression in s-channel but Boltzmann suppressed

t-channel no Boltzmann suppression but doubly suppressed by $\boldsymbol{\Lambda}$

Dark Matter

Freezeout process governed by (co-)annihilation processes

Less Λ suppression in s-channel but Boltzmann suppressed

t-channel no Boltzmann suppression but doubly suppressed by Λ

Bottom line:

- -for $\Delta \ll 1\%$: s-channel dominates, but have direct detection constraints
- -for $\Delta \sim 1$: t-channel dominates need large couplings for F.O. that are excluded
- -for $\Delta \sim 1\%$: unprobed masses and couplings that give right relic abundance

Results

Signal **Dark Matter** -Production -D.D. -Background -F.O. -Signal Results $-\Delta = \{0.001, 0.01, 0.05\}$ $-\Lambda^{-1}$, m_0 -MDM (EDM)

Results MDM

SHiP projections

Summary $\Delta = \{0.001, 0.01, 0.05\}$

- FASER can search for $\gamma's$ from inelastic dipole DM decay
- Best suited to explore signals that would be too soft at other experiments

If DM is thermally produced and interacts via MIDM

- \rightarrow then only Δ < 0.05 is unexcluded for GeV masses
- → FASER can probe

Thank you!

Results

$\Delta = 0.01$

Results

