DISTORTION OF NEUTRINO OSCILLATIONS BY DARK PHOTON DARK MATTER

Katarina Bleau Pheno 2023 May 8th, 2023

G. Alonso-Alvarez, K. Bleau, and J. M. Cline, "Distortion of neutrino oscillations by dark photon dark matter," Phys. Rev. D, vol. 107, p. 055045, Mar 2023. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevD.107.055045

Introducing the Dark Photon

- Candidate for dark matter
- Field is locally polarized (has fixed direction)
- Couples to $L_{\mu}-L_{ au}$
- Modifies dispersion relation of ν_{μ} and ν_{τ}
 - ➤ Modifies Hamiltonian describing neutrino oscillations

Goal: Place bounds on dark photon gauge coupling and mass, and on neutrino vacuum oscillation parameters

- ➤ Solve Schrödinger equation for modified Hamiltonian
- ➤ Compare prediction to experimental data

Contents

Dark photon – neutrino interaction

Long baseline experiments

Solar neutrino experiments

Dark photon parameter space

Conclusion

Dark Photon — Neutrino Interaction

• Shift in neutrino dispersion relation:

$$E \to \sqrt{(\vec{p} \mp g'\vec{A'})^2 + m^2} \cong |\vec{p}| + \frac{m^2}{2p} \mp g'\hat{p} \cdot \vec{A'} + O(g'^2A'^2)$$

g' = dark photon gauge coupling

A' = amplitude of dark photon field

∓ depends on neutrino flavor

 Approximate A'= constant in solar neighborhood + direction of neutrinos in experiments is constant

$$\hat{p} \cdot \vec{A}' = A'_{\odot} \cos(m_{A'} t)$$

Background A' field makes up fraction of dark matter of the Universe

Dark Photon – Neutrino Interaction

• Hamiltonian for two-flavor approximation:

$$H = \begin{cases} \frac{\Delta m_{23}^2}{4p} \begin{pmatrix} -\cos 2\theta_{23} & \sin 2\theta_{23} \\ \sin 2\theta_{23} & \cos 2\theta_{23} \end{pmatrix} + g'A'_{\odot}\cos(m_{A'}t) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \text{ atmospheric} \\ \frac{\Delta m_{12}^2}{4p} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} + g'A'_{\odot}\cos(m_{A'}t) \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}, \text{ solar} \end{cases}$$

 Numerically solve Schrödinger equation for survival probability of given flavor:

$$i\frac{d\Psi}{dt} = H\Psi$$
 $P_{\mu\to\mu}(t) = |\langle \Psi(0)|\Psi(t)\rangle|^2$

Long Baseline Neutrino Experiments

 Atmospheric neutrinos generated by cosmic ray interactions

• Data:

- Tokai-to-Kamioka (T2K) experiment
- Generate initial beam of ν_{μ} and observe flavor content at detector at L = 295 km

• Prediction:

- dP/dE spectrum of initial beam
- $P_{\mu \to \mu}(E, t \cong L)$
- Detector response

Long Baseline Neutrino Experiments

- χ^2 test comparing data with different predicted spectra, varying four parameters
- Orange star and solid (dashed) lines correspond to best fit point and 95% (68%) confidence line limits
- Green cross and dashed line correspond to best fit point and 68% confidence line limits in absence of dark photon

Long Baseline Neutrino Experiments

•
$$m_{A'} \ll \frac{\Delta m^2}{4p} \sim 10^{-12} eV$$
:

• Asymptotically independent of m_A ,

•
$$m_{A'} \gg \frac{\Delta m^2}{4p} \sim 10^{-12} eV$$
:

• $m_{A\prime} \gg \frac{\Delta m^2}{4p} \sim 10^{-12} eV$:
• Shift in $\Delta m^2 \propto \frac{g' A'_{\odot}}{m_{A\prime}}$ (perturbation theory)

•
$$m_{A'} \sim 10^{-12} - 10^{-11} eV$$
:

 Interplay between neutrino and dark photon oscillation times

Solar Neutrino Oscillations

- v_e produced in the Sun
- As they travel through the Sun, matter potential changes with varying electron density
- Generates adiabatic conversions of ν_e into predominantly ν_μ
- Data:
 - Sudbury Neutrino Observatory (SNO) and Super-Kamiokande Phase IV (SK-IV)
 - Detect solar v_e flux on Earth
- Prediction:
 - $P_{e \to e}(E, t \cong R_{\odot})$
- Need to add term to Hamiltonian to account for varying matter potential

$$H = \frac{\Delta m_{12}^2}{4p} \begin{pmatrix} -\cos 2\theta_{12} & \sin 2\theta_{12} \\ \sin 2\theta_{12} & \cos 2\theta_{12} \end{pmatrix} + \begin{pmatrix} \sqrt{2}G_F n_e & 0 \\ 0 & 0 \end{pmatrix} + g'A'_{\odot}\cos(m_{A'}t) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

 n_e = electron density G_F = Fermi constant

Solar Neutrino Oscillations

- χ^2 test comparing data with different predicted spectra, varying four parameters
- Orange star and solid (dashed) lines correspond to best fit point and 95% (68%) confidence line limits
- Green cross and dashed line correspond to best fit point and 68% confidence line limits in absence of dark photon

Solar Neutrino Oscillations

- Similar limits as for atmospheric neutrinos at low and high frequencies
- Main difference:
 - Two characteristic frequencies

$$\frac{\Delta m^2}{4p} \sim 10^{-12} - 10^{-11} \, eV$$

$$\frac{1}{R_{\odot}} \sim 3 \times 10^{-16} \, eV$$

Dark Photon Parameter Space

• Using known dark matter concentration factor to relate A' and A'_{\odot} :

$$A_{\odot}' \simeq 25 \text{ MeV} \left(\frac{10^{-10} \text{ eV}}{m_{A'}}\right) \sqrt{\frac{\Omega_{A'}}{\Omega_{\text{DM}}}}$$

• Find limits on g' and m_A , assuming dark photon is totality of dark matter

Conclusion

- Studied effect of background oscillating $L_{\mu}-L_{\tau}$ dark matter gauge field on long baseline experiments and solar neutrino oscillations
 - 2 Strongest limits on g' for $m_{A'} \lesssim 10^{-11} \ eV$

Dark photon introduces degeneracies with neutrino vacuum oscillation parameters, which increases amount of allowed values