Searching for new symmetries in the Higgs sector at ATLAS

Phenomenology 2023 Symposium University of Pittsburgh 8-10th May 2023

Paul Thompson
University of Birmingham
On behalf of the ATLAS collaboration

Introduction

- Discovery of the Higgs boson (H) with m_H =125 GeV confirms mass generation mechanism via spontaneous electroweak symmetry breaking (EWSB)
- The Standard Model (SM) is consistent with many experimental measurements but cannot describe e.g. dark energy/matter, matter asymmetry and gravity
- Many extensions Beyond the Standard Model (BSM) predict additional scalar fields for EWSB and extra Higgs-like bosons. These may be, depending on the model:
 - CP-even scalars h and H
 - CP-odd pseudoscalars a and A
 - \blacksquare charged scalars H^+ and H^-
 - Described using mixing parameters and Higgs-doublet vacuum expectation values
- Here, highlight recent searches for additional (low- or high-mass) Higgs bosons, and decays of H(125 GeV) to new light scalar particles

Related ATLAS talks in this session

- "Searches for BSM resonances in ATLAS", Blaz Leban
- "Searches for Dark Matter with the ATLAS Experiment at the LHC", Jia Jian Teoh

ATLAS Results

There are many searches, focus on the most recent preliminary and final ATLAS results

- Search for a new light pseudoscalar decaying into a pair of muons in events with a top-quark pair arXiv:2304.14247 (Submitted to Phys. Rev. D)
- Search for heavy Higgs bosons in multilepton plus b-jets final states <u>ATLAS-CONF-2022-039</u> (preliminary result)
- Charged Higgs search arXiv:2302.11739 (submitted to JHEP)
- Dark matter searches with $H \rightarrow \tau \tau$ decays ATLAS-CONF-2022-069 (preliminary result)

- Analyses use full Run 2 data sample ($\sqrt{s}=13$ TeV p-p collisions) with integrated luminosity of 139 fb $^{-1}$
- Use the excellent resolution of the ATLAS detector for searching for signatures of BSM physics e.g. lepton reconstruction, b-jet identification etc..

Search for $a \to \mu\mu$ in $t\bar{t}$ events <u>arXiv:2304.14247</u> (Sub. to Phys. Rev. D)

- New light pseudoscalars mix with fields in an extended Higgs sector, may include additional heavy neutral and charged scalars, inheriting the Yukawa couplings to fermions.
- Large coupling to top quarks suggests to search in events with a top-quark pair
- Two scenarios $pp \to t\bar{t}a$ and $pp \to t\bar{t}$ with $t \to H^\pm b, H^\pm \to W^\pm a$ using $a \to \mu\mu$ for high mass resolution

- lacksquare Search in range $15 < m_a < 72$ GeV and $120 \le m_{H^\pm} \le 160$ GeV
- \blacksquare One leptonic top decay: 3 lepton signature $e\mu\mu$ and $\mu\mu\mu$
- Define "On-Z"control regions (n_{b-jets}, n_{jets})
- $t\bar{t}$ control region $(p_T^{\mu,\text{fake}})$

Search for $a \to \mu\mu$ in $t\bar{t}$ events <u>arXiv:2304.14247</u> (Sub. to Phys. Rev. D)

Signal region plots for hypothesis $m_a=35$ GeV (parameterised width of double crystal ball vs m_a) Upper limits at 95% confidence level on $\sigma(t\bar{t}a)\times\mathcal{B}$ and \mathcal{B} ($t\to H^\pm b, H^\pm\to W^\pm a, a\to \mu\mu$) vs m_a for various m_{H^\pm} . Results largely dominated by statistical uncertainties

Heavy Higgs boson in multilepton plus *b*-jets final states ATLAS-CONF-2022-039

- Results are interpreted in the general two Higgs doublet model (g2HDM) allowing flavour changing neutral Higgs (FCNH) couplings
- Additional heavy (sub-TeV) bosons: consider three couplings involving top quarks to up-type quarks ρ_{tu} , ρ_{tc} and ρ_{tt} (ρ_{tc} and ρ_{tt} can explain generation of baryon asymmetry)
- Benchmark values e.g. $\rho_{tt} = 0.4$, $\rho_{tq} = 0.2$
- Analysis targets 5 production modes
- First BSM search for three top-quark production (sensitivity to new physics)

Heavy Higgs boson in multilepton plus *b*-jets final states ATLAS-CONF-2022-039

- Event categorisation based on lepton multiplicity and charge: 21 same-sign, 31, and 41
- Further split based on output of the multi-category deep neural network (*DNN*^{cat}), using 12 input variables, targeting the 5 BSM signals
- Split further according to lepton charge of any same-sign pair "++" or "--"
- Second *DNN*^{SB} in each category to suppress SM background (and act as discriminant)
- Control regions to constrain main backgrounds: WZ, ttZ, converted and HF leptons

Heavy Higgs boson in multilepton plus *b*-jets final states ATLAS-CONF-2022-039

- 95% CL upper limits on the $\sigma \times BR$ for all the 2HDM signals together
- \blacksquare A mild excess observed over the SM expectation at $m_H=1000$ GeV for a local significance of 2.81σ
- Limits on m_H were set for different coupling choices
- Excluded masses as a function of two couplings

Charged Higgs Search $H^{\pm} \rightarrow cb$ arXiv:2302.11739 (submitted to JHEP)

Three Higgs doublet model (3HDM)

- 3 CP-even plus 2 CP-odd neutral Higgs bosons and 2 charged Higgs bosons
- Lightest H^{\pm} can be lighter than top quark
- Decays to $\tau \nu$, cb or cs

Search for $H^{\pm} \rightarrow cb$ in top-quark decays (SM background $W^{\pm} \rightarrow cb$ CKM suppressed)

- Experimental signature: single-lepton, > 4 jets, > 3b-jets.
- Dominant *tt*+jets backgrd: 2b + 1b loose CR, derive $t\bar{t}$ MC correction (H_T)
- Mass parameterised NN (29 inputs). Simultaneous fit of 6 regions
- 10 bins for 3*b*-jet distributions, 1 bin for > 4*b*-iet

N _j N _b	2b + 1bl: exactly two b-tagged jets (60% OP) plus one loose b- tagged jet (70% OP)	3b: exactly three <i>b</i> -tagged jets (60% OP)	≥4b: at least four <i>b</i> -tagged jets (60% OP)
4j: exactly four jets	4j, 2b + 1bl (data-based $t\bar{t}$ corrections, 10 bins)	4j, 3b (signal region, 10 bins)	4j, 4b $(t\overline{t} + \ge 1b \text{ background control region and large } S/B \text{ region, } 1 \text{ bin})$
5j: exactly five jets	5j, 2b + 1bl (data-based $t\bar{t}$ corrections, 10 bins)	5j, 3b (signal region, 10 bins)	$5j, \ge 4b$ ($t\bar{t} + \ge 1b$ background control region and large S/B region, 1 bin)
6j: exactly six jets	6j, 2b + 1bl (data-based $t\bar{t}$ corrections, 10 bins)	6j, 3b (signal region, shape correction for the NN discriminant in low S/B bins, 10 bins)	6j,≥ $4b(t\bar{t} + \ge 1b background control region, 1 bin)$

- Example below of NN score for 4-jet, 3b-jet category (best-fit branching fraction of 0.16%)
- 3σ local (2.5 σ global) excess at $m_{H^{\pm}}=130$ GeV

Benchmark 3HDM signals from Phys. Rev. D 98, 115024 (2018) and arXiv:1605.05881 [hep-ph]

Improvement of factor 5 in sensitivity and extension in m_{H^\pm} compared to previous results

Search for Dark Matter $H \to \tau \tau$ plus Missing E_T <u>ATLAS-CONF-2022-069</u>

- Complementary to mono- $H(125) \rightarrow bb$, $\gamma \gamma$ searches
- Probes structure of BSM physics responsible for dark matter production
- Interpretation in 2HDM+a model:
- \blacksquare Adds new pseudoscalar singlet, a, that couples to baseline 2HDM. Fermionic DM particle χ with mass 10 GeV

- Signature: 2 hadronic taus + missing *E_T*
- 2 cut-based signal regions targeting low/high *m*_A signatures
- $Z \rightarrow \tau \tau$, top-quark processes: fitted to data in CRs
- Fake taus ($W \rightarrow \tau \nu$, multi-jet): fake-factor method
- Diboson: Normalisation studied in data validation region

Results: Search for Dark Matter $H \rightarrow \tau \tau$ plus Missing E_T ATLAS-CONF-2022-069

Observed and expected exclusion contours at 95% CL

- As a function of m_a and m_A with $\sin \Theta = 0.35$ (mixing angle between the two pseudoscalars) and $\tan \beta = 1$
- The excluded area is to the left of the solid line

- As a function of m_A and $\tan \beta$ with $\sin \Theta = 0.7$ and $m_a = 250$ GeV
- The excluded area is below the solid line.

Summary

- Searches for additional Higgs bosons at ATLAS have yielded results that are still compatible with the Standard Model
- These searches push the limits of our understanding of BSM and provide an opportunity to discover new physics . . .
- ATLAS continues to search for them and has started the Run 3 programme at a centre-of-mass energy of 13.6 TeV

Backup

arXiv:2302.11739

- Broad excess across all regions
- \blacksquare consistent with $m_{H^{\pm}}$ resolution (degraded by ambiguity in choosing correct b-jet pair)

