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Spectrum of Dark Matter candidates
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Figure 1: Dark matter candidates range in mass over 90 orders of
magnitude! Image from arXiv:2005.03254v2
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Ultralight Dark Matter(ULDM)
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m Dark matter below an eV is call Ultralight dark
matter(ULDM)

m Due to its large number densities (in phase space)
Ultralight Dark Matter behaves like a classical field

m The light end of ULDM is fuzzy dark matter that can help
with the core-cusp problem
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ULDM With Linear Couplings

A possible way to couple to the Standard Model
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Figure 2: ¢ mediates a long range force. V(r) oc e=™¢" /r
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ULDM With Quadratic Couplings

m Photons: £ D —wim%sz,FW
2

m Gluons: £ D %%tr(GWGW)

m Electrons: £ D —me%ée

m Light Quarks: £ D= —mq%zilq
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Varying Fundamental Constants

In the presence of a non-zero ¢ field values the value of
fundamental constants shift.

m Photons: £ D L %F#VFW — Aa _ ¢’

16T a A2
) B3 ¢* AMgep _ &2
m Gluons: £ D ﬁﬁtr(G,ﬂ,GW) = Thaon = 1
. 2 — A 2
m Fermions: £ D —m%ff = St = %
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Varying Fundamental Constants and Big Bang
Nucleosynthesis

m Increasing the electron mass lowers the amount of phase
space available for the reactions
n+ (et or v) = p+ (¥ or e7) and neutron decay. This
increases the abundance of neutrons during BBN,
increasing the amount of Helium-4 produced.

m Increasing the quark masses increases the neutron proton
mass difference. This decreases the equilibrium abundance
of neutrons in the early universe and increases the phase
space available for neutron decay. Leading to fewer
neutrons available for BBN and less Helium-4 production.
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Varying Fundamental Constants and Big Bang
Nucleosynthesis

m Increasing the a deceases the neutron proton mass
difference leading to more Helium-4.

m Increasing Aqcp deceases the neutron proton mass
difference and the increasing the deuterium binding energy.
The larger deuterium binding energy leads to BBN to
happen earlier increasing the amount of Helium-4
produced.
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Dark Matter Evolution

A homogeneous scalar field obeys

¢+ 3Hd + (m +m?)¢ =0,

where my is the scalar mass and mjy is the mass induced by
interactions with the Standard Model bath. There are three
regimes

= Hubble friction domination(H): When H? >> mi, m?

m Bare mass domination(B): When m(% > H? m?

» Induced mass domination(I): When m? > H?, md%

During Hubble friction dominated it is frozen. During bare
mass or induced mass domination the field is rapidly oscillatory
and the amplitude is a_3/2(m§) +m2)~1/4
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Example Evolution

Electron Coupling Case

g &
my=10"2 eV
A=10"7 GeV
10°11 1071 10 108 1077

a

10/ 14



Results
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Conclusions

m ULDM can lead to "varying fundamental constants"

m Varying fundamental constants modify BBN and lets us
put constraints on ULDM

m Back-reaction from the SM can modify the evolution of the
dark matter leading to nontrivial behavior.
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Thank You!
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