Bubble profile and baryon asymmetry in complex 2HDM

Ajay Kaladharan¹ Dorival Gonçalves¹ Yongcheng Wu²

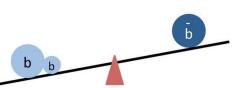
Oklahoma State University¹, Nanjing Normal University²

May 7, 2023 Pheno 2023 University of Pittsburgh

- 1. Matter-antimatter Asymmetry puzzle
- Electroweak Baryogenesis
 Electroweak phase transition
 Bubble profile
 Semi-classical force approach
- 3. Complex 2HDM
- 4. Results
- 5. Summary

1. Matter-antimatter Asymmetry puzzle

- Electroweak Baryogenesis
 Electroweak phase transition
 Bubble profile
 Semi-classical force approach
- 3. Complex 2HDN
- 4. Results
- 5. Summary


Matter-antimatter Asymmetry puzzle

▶ Baryon to photon ratio: $\eta = \frac{n_B - n_{\bar{B}}}{\gamma} = 6 \times 10^{-10} \frac{\text{excess baryons}}{\text{photon}}$

 10^{10}

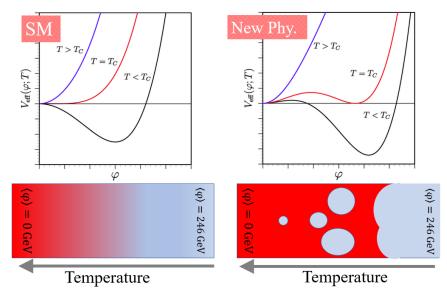
(WMAP data)

Need physics beyond the standard model!

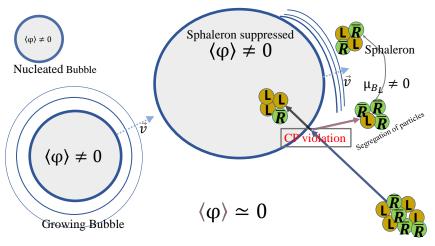
- ► The three necessary conditions to dynamically generate baryon asymmetry from none previously existed,
 - 1. Baryon number violation
 - 2. C and CP violation

 $10^{10} + 1$

3. Departure from thermal equilibrium


(A Sakharov 1967)

- 1. Matter-antimatter Asymmetry puzzle
- 2. Electroweak Baryogenesis
 Electroweak phase transition
 Bubble profile
 Semi-classical force approach
- 3. Complex 2HDM
- 4. Results
- Summary


Electroweak phase transition

Electroweak baryogenesis

Sphaleron to be suppressed inside the bubble, we need a strong first-order phase transition $\xi \equiv \frac{\langle \varphi \rangle}{T} \gtrapprox 1$

Bubble profile

▶ Key ingredient in estimation of baryon asymmetry during EWBG is bubble profile

$$\frac{d^2\phi}{dr^2} + \frac{2}{r}\frac{d\phi}{dr} = \frac{dV(\phi,T)}{d\phi}\,, \quad \text{with} \quad \lim_{r\to\infty}\phi(r) = 0 \quad \text{and} \quad \lim_{r\to0}\frac{d\phi(r)}{dr} = 0.$$

(A D Linde 1980)

In the literature, it is a customary practice to parameterize tunneling profile $\theta^i(z)$ by kink profile using \tanh function

$$\theta^{i}(z) = \left(\frac{\theta_{\text{brk}}^{i} + \theta_{\text{sym}}^{i}}{2} - \frac{\theta_{\text{brk}}^{i} - \theta_{\text{sym}}^{i}}{2} \left(\tanh\left(\frac{z}{L_{W}}\right) \right) \right).$$

(D Bodeker, L Fromme, S J. Huber, M Seniuch 2004)

$$\theta^{i}(z \to -\infty) = \theta^{i}_{\text{brk}}$$

 $\theta^{i}(z \to \infty) = \theta^{i}_{\text{sym}}$

Semi-classical force method

 Particle interaction with bubble wall can be formalized using the WKB approximation. Force acting on the particle is given by (+particle/-antiparticle)

$$F_z = -\frac{(m^2)'}{2E_0} \pm s \frac{(m^2\theta')'}{2E_0 E_{0z}} \mp \frac{\theta' m^2 (m^2)'}{4E_0^3 E_{0z}}.$$

(L Fromme, S J. Huber, 2006)

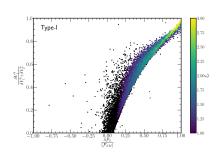
• Source term of the top quark S_t

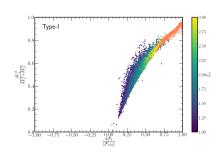
$$S_t = -v_W K_{8,t} \partial_z (m_t^2 \partial_z \theta) + v_W K_{9,t} (\partial_z \theta) m_t^2 (\partial_z m_t^2).$$

In front of the bubble wall, the negative value of $\partial_z \theta$ leads to a positive S_t and, thereby, in most cases, positive asymmetry.

- ► Chemical potential for left-handed quarks $\mu_{B_L} = \mu_{q_1,2} + \mu_{q_2,2} + \frac{1}{2}(\mu_{t,2} + \mu_{b,2})$.
- ▶ LH quark asymmetry is converted into baryon asymmetry by weak sphalerons,

$$\eta_{\beta} = \frac{n_B}{s} = \frac{405\Gamma_{ws}}{4\pi^2 v_w g_{\star} T} \int_0^{\infty} dz \mu_{B_L} \exp\left(-\frac{45\Gamma_{ws} z}{4v_w}\right).$$

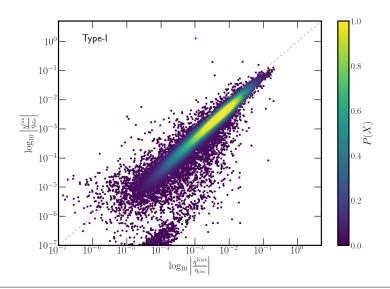

- 1. Matter-antimatter Asymmetry puzzle
- Electroweak Baryogenesis
 Electroweak phase transition
 Bubble profile
 Semi-classical force approach
- 3. Complex 2HDM
- 4. Results
- 5. Summary

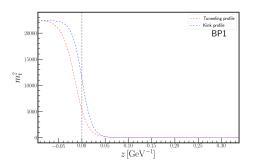

Complex 2HDM

Complex 2HDM with a softly broken \mathbb{Z}_2 symmetry.

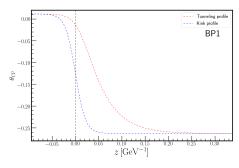
$$V_{0}(\Phi_{1}, \Phi_{2}) = m_{11}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{22}^{2} \Phi_{2}^{\dagger} \Phi_{2} - (m_{12}^{2} \Phi_{1}^{\dagger} \Phi_{2} + h.c.) + \frac{\lambda_{1}}{2} (\Phi_{1}^{\dagger} \Phi_{1})^{2} + \frac{\lambda_{2}}{2} (\Phi_{2}^{\dagger} \Phi_{2})^{2} + \lambda_{3} (\Phi_{1}^{\dagger} \Phi_{1}) (\Phi_{2}^{\dagger} \Phi_{2}) + \lambda_{4} (\Phi_{1}^{\dagger} \Phi_{2}) (\Phi_{2}^{\dagger} \Phi_{1}) + \left(\frac{\lambda_{5}}{2} (\Phi_{1}^{\dagger} \Phi_{2})^{2} + h.c.\right).$$

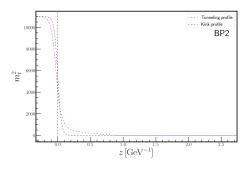
$$\frac{\Delta \mathcal{F}_0}{|\mathcal{F}^{\mathrm{SM}}|} \equiv \frac{\mathcal{F}_0 - \mathcal{F}_0^{\mathrm{SM}}}{|\mathcal{F}^{\mathrm{SM}}|}$$
,


$$\frac{\Delta \mathcal{F}_0}{|\mathcal{T}^{\text{SM}}|} \equiv \frac{\mathcal{F}_0 - \mathcal{F}_0^{\text{SM}}}{|\mathcal{T}^{\text{SM}}|}, \qquad \mathcal{F}_0 \equiv V_{\text{eff}}(v_1, v_2, T=0) - V_{\text{eff}}(0, 0, T=0)$$

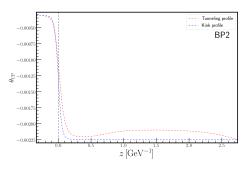

- 1. Matter-antimatter Asymmetry puzzle
- Electroweak Baryogenesis
 Electroweak phase transition
 Bubble profile
 Semi-classical force approach
- 3. Complex 2HDM
- 4. Results
- 5. Summary

Baryon asymmetry comparison

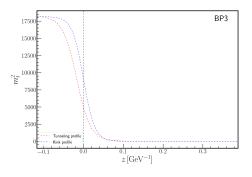




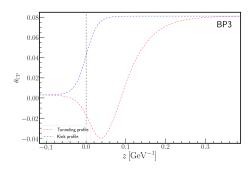
$$\eta_B^{\rm tun} = 5.51061 \times 10^{-12}$$



$$\eta_B^{\rm kink} = 1.05886 \times 10^{-11}$$



$$\eta_B^{\rm tun} = 1.08663 \times 10^{-10}$$



$$\eta_B^{\rm kink} = 8.79358 \times 10^{-14}$$

$$\eta_B^{\rm tun} = 1.16237 \times 10^{-10}$$

$$\eta_B^{
m kink} = -2.33474 \times 10^{-12}$$

- 1. Matter-antimatter Asymmetry puzzle
- Electroweak Baryogenesis
 Electroweak phase transition
 Bubble profile
 Semi-classical force approach
- 3. Complex 2HDM
- 4. Results
- 5. Summary

Summary

- 1. For most points, the kink profile can capture baryon asymmetry predicted by the tunneling profile, but there are a small fraction of points where the difference in asymmetry is significant.
- 2. The kink profile generally gives a slightly larger asymmetry in magnitude than the tunneling profile because it provides a larger top mass near the bubble wall.
- 3. In some cases, source term can be active in larger regime for the tunnelling profile and could yield two or more orders large asymmetry compared to kink profile.
- 4. The behavior of the phase of top mass θ_{CP} near the bubble wall could differ for kink and tunnelling profiles, and it could lead to the opposite sign of asymmetry.
- 5. When vacuum upliftment measure $\Delta \mathcal{F}_0/|\mathcal{F}_0^{\rm SM}|$ is very large, universe could be trapped in the false vacuum. Vacuum trapping constraint excludes bulk of $\xi_c > 2$.

Thank you!

Backup slides

Semi-classical force method

 Particle interaction with bubble wall can be formalized using the WKB approximation. Force acting on the particle is given by (+particle/-antiparticle)

$$F_z = -\frac{(m^2)'}{2E_0} \pm s \frac{(m^2\theta')'}{2E_0E_{0z}} \mp \frac{\theta'm^2(m^2)'}{4E_0^3E_{0z}}.$$

(L Fromme, S J. Huber, 2006)

Perturbation from equilibrium density of species i due to bubble wall movement

$$f_i = \frac{1}{e^{\beta[\gamma_W(E_0 + v_w p_z) - \mu_i]} + 1} + \delta f_i$$

 \triangleright The evolution of f_i is described by the Boltzmann equation

$$\mathbf{L}[f_i] \equiv (v_g \partial_z + \dot{p}_z \partial_{p_z}) f_i = C[f_i], \qquad v_g = \frac{P_z}{E_0} \left(1 \pm \frac{\theta' m^2}{2E_0^2 E_{0z}} \right).$$

Plasma velocity
$$u_i \equiv \left\langle \frac{p_z}{E_0} \delta f_i \right\rangle$$
.

Semi-classical force method

▶ We can separate CP odd and even parts

$$\mu_i \equiv \mu_{i,1e} + \mu_{i,2o} + \mu_{i,2e}, \qquad \delta f_i \equiv \delta f_{i,1e} + \delta f_{i,2o} + \delta f_{i,2e}.$$

Second-order CP odd chemical potential and plasma velocities

$$\mu_{i,2} \equiv \mu_{i,2o} - \bar{\mu}_{i,2o}, \qquad u_{i,2} \equiv u_{i,2o} - \bar{u}_{i,2o}.$$

• Source term of the top quark S_t

$$S_t = -v_W K_{8,t} \partial_z (m_t^2 \partial_z \theta) + v_W K_{9,t} (\partial_z \theta) m_t^2 (\partial_z m_t^2).$$

In front of the bubble wall, the negative value of $\partial_z \theta$ leads to a positive S_t and, thereby, in most cases positive asymmetry.

- Chemical potential for left-handed quarks $\mu_{B_L} = \mu_{q_1,2} + \mu_{q_1,2} + \frac{1}{2}(\mu_{t,2} + \mu_{b,2})$.
- left-handed quarks asymmetry is converted into baryon asymmetry by weak sphalerons,

$$\eta_{\beta} = \frac{n_B}{s} = \frac{405\Gamma_{ws}}{4\pi^2 v_w g_{\star} T} \int_0^{\infty} dz \mu_{B_L} \exp\left(-\frac{45\Gamma_{ws} z}{4v_w}\right).$$