### Deep Learning Symmetries in Physics and Beyond

Roy T. Forestano Konstantin T. Matchev Katia Matcheva Alexander Roman Eyup B. Unlu Sarunas Verner

### **University of Florida**



arxiv:2301.05638 arxiv:2302.05383 arxiv:2302.00806 arxiv:2305.xxxxx

2023 Phenomonology Symposium Tuesday, 9 May 2023





## Notation and Set-Up

Invariance: 
$$\varphi(\mathbf{g} \bullet \mathbf{x}) = \varphi(\mathbf{x})$$
 (1)

#### **Labelled Dataset**

n features

k labels

 $^{m}$  samples

$$\begin{cases} x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(n)}; & y_1^{(1)}, \dots, y_1^{(k)} \\ x_2^{(1)}, x_2^{(2)}, \dots, x_2^{(n)}; & y_2^{(1)}, \dots, y_2^{(k)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_m^{(1)}, x_m^{(2)}, \dots, x_m^{(n)}; & y_m^{(1)}, \dots, y_m^{(k)} \end{cases}$$

Ш

$$\begin{aligned} \{\textbf{x}_i\} &\equiv \{\textbf{x}_1,\textbf{x}_2,\ldots,\textbf{x}_m\} \text{ where } \textbf{x}_i \in \textbf{V}^n \\ \{\textbf{y}_i\} &= \{\textbf{y}_1,\textbf{y}_2,\ldots,\textbf{y}_m\} = \underbrace{\{\vec{\varphi}(\textbf{x}_i)\}}_{\text{Oracle}} \end{aligned}$$



Invariance: 
$$\varphi(\mathbf{g} \bullet \mathbf{x}) = \varphi(\mathbf{x})$$
 (1)

#### **Labelled Dataset**

*n* features

k labels

 $^{m}$  samples

$$\begin{cases} x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(n)}; & y_1^{(1)}, \dots, y_1^{(k)} \\ x_2^{(1)}, x_2^{(2)}, \dots, x_2^{(n)}; & y_2^{(1)}, \dots, y_2^{(k)} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_m^{(1)}, x_m^{(2)}, \dots, x_m^{(n)}; & y_m^{(1)}, \dots, y_m^{(k)} \end{cases}$$

 $\{\mathbf{x_i}\} \equiv \{\mathbf{x_1}, \mathbf{x_2}, \dots, \mathbf{x_m}\}$  where  $\mathbf{x_i} \in \mathbf{V^n}$   $\{\mathbf{y_i}\} = \{\mathbf{y_1}, \mathbf{y_2}, \dots, \mathbf{y_m}\} = \underbrace{\{\vec{arphi}(\mathbf{x_i})\}}_{ ext{Oracle}}$  (learned or postulated)

### **Transformation**

Transformation on feature space:

$$g: x_i \to x'_i$$

Transformation is a symmetry if:

$$\varphi(\mathbf{x}_i') \equiv \varphi(g(\mathbf{x}_i)) = \varphi(\mathbf{x}_i)$$

**Goal:** Find transformations  $g(x_i)$  which preserve the oracle  $\varphi$ .



Invariance: 
$$\varphi(\mathbf{g} \bullet \mathbf{x}) = \varphi(\mathbf{x})$$
 (1)

#### **Labelled Dataset**

n features

k labels

m samples

$$\begin{cases} x_1^{(1)}, x_1^{(2)}, \dots, x_1^{(n)}; & y_1^{(1)}, \dots, y_1^{(k)} \\ x_2^{(1)}, x_2^{(2)}, \dots, x_2^{(n)}; & y_2^{(1)}, \dots, y_2^{(k)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_m^{(1)}, x_m^{(2)}, \dots, x_m^{(n)}; & y_m^{(1)}, \dots, y_m^{(k)} \end{cases}$$

$$\begin{aligned} \{\textbf{x}_i\} &\equiv \{\textbf{x}_1, \textbf{x}_2, \dots, \textbf{x}_m\} \text{ where } \textbf{x}_i \in \textbf{V}^n \\ \{\textbf{y}_i\} &= \{\textbf{y}_1, \textbf{y}_2, \dots, \textbf{y}_m\} = \underbrace{\{\vec{\varphi}(\textbf{x}_i)\}}_{\text{Oracle}} \\ \text{(learned or postulated)} \end{aligned}$$

#### **Transformation**

Transformation on feature space:

$$g: x_i \to x'_i$$

Transformation is a symmetry if:

$$\varphi(\mathbf{x}_i') \equiv \varphi(g(\mathbf{x}_i)) = \varphi(\mathbf{x}_i)$$

Goal: Find transformations  $g(x_i)$  which preserve the oracle  $\varphi$ .

In physics,  $\varphi$  represents a conserved quantity.

| g                        | φ                      |
|--------------------------|------------------------|
| Time Translation $(T_0)$ | Е                      |
| Rotation $(R_{ij})$      | Ĺ                      |
| Lorentz $(K_{\mu  u})$   | $\mathcal{T}^{\mu  u}$ |



#### Linear

$$\mathbf{x}' = (\mathbb{I} + \epsilon \mathcal{W}) \mathbf{x} \tag{2}$$

 $\mathbb{I} \equiv \ \ \, \text{identity matrix}$ 

 $\mathcal{W} \equiv egin{array}{cc} n imes n ext{ matrix to be} \ & ext{learned by our method} \end{array}$ 





#### Linear

$$\mathbf{x}' = (\mathbb{I} + \epsilon \mathcal{W}) \mathbf{x} \tag{2}$$

 $\mathbb{I} \equiv \mathsf{identity} \; \mathsf{matrix}$ 

 $\mathcal{W} \equiv \binom{n \times n \text{ matrix to be}}{\text{learned by our method}}$ 

Figure: Visualization: SU(2) generators for a single layer linear model using the L2-norm oracle  $\varphi(\mathbf{x}) = |\mathbf{x}|$ .





#### Linear

$$\mathbf{x}' = (\mathbb{I} + \epsilon \mathcal{W}) \mathbf{x} \tag{2}$$

 $\mathbb{I} \equiv \mathsf{identity} \mathsf{matrix}$ 

$$\mathcal{W} \equiv {n \times n \text{ matrix to be} \atop \text{learned by our method}}$$

Figure: Visualization: SU(2) generators for a single layer linear model using the L2-norm oracle  $\varphi(\mathbf{x}) = |\mathbf{x}|$ .



### **Non-Linear**



to be learned by our method



(3)

#### Linear

$$\mathbf{x}' = (\mathbb{I} + \epsilon \mathcal{W}) \mathbf{x} \tag{2}$$

 $\mathbb{I} \equiv \mathsf{identity} \mathsf{matrix}$ 

 $\mathcal{W} \equiv \binom{n \times n \text{ matrix to be}}{\text{learned by our method}}$ 

Figure: Visualization: SU(2) generators for a single layer linear model using the L2-norm oracle  $\varphi(\mathbf{x}) = |\mathbf{x}|$ .



### **Non-Linear**



Figure: Visualization: Grid vector transformation representation for a deep linear layered model using the L1-norm oracle  $\varphi(\mathbf{x}) = |\mathbf{x}^{(1)}| + |\mathbf{x}^{(2)}|$ .



(3)

## Ensure Symmetry $\implies$ Invariance $\mathcal{L}_{inv}(\mathcal{G}_{\mathcal{W}}, \{\vec{x_i}\})$

Enforces invariance among a chosen oracle  $\vec{\varphi}(\vec{x})$ , e.g.  $l^2$ -norm  $\varphi(\vec{x}) = \sqrt{x_i^* x^i}$ ,

$$\mathcal{L}_{inv} = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}(\mathcal{F}_{\mathcal{W}} \vec{x}_i) - \vec{\varphi}(\vec{x}_i) \right]^2 = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}\left( (\mathbb{I} + \varepsilon \mathcal{W}) \vec{x}_i \right) - \vec{\varphi}(\vec{x}_i) \right]^2$$
(4)





## Ensure Symmetry $\implies$ Invariance $\mathcal{L}_{inv}(\mathcal{G}_{\mathcal{W}}, \{\vec{x_i}\})$

Enforces invariance among a chosen oracle  $\vec{\varphi}(\vec{x})$ , e.g.  $l^2$ -norm  $\varphi(\vec{x}) = \sqrt{x_i^* x^i}$ ,

$$\mathcal{L}_{inv} = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}(\mathcal{F}_{\mathcal{W}} \vec{x}_i) - \vec{\varphi}(\vec{x}_i) \right]^2 = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}\left( (\mathbb{I} + \varepsilon \mathcal{W}) \vec{x}_i \right) - \vec{\varphi}(\vec{x}_i) \right]^2$$
(4)

# Ensure non-triviality $(\mathbf{x}' \neq \mathbf{x}) \implies \text{Normalization } \mathcal{L}_{norm}(\mathcal{G}_{\mathcal{W}}, \{\vec{x_i}\})$

Enforces the normalization condition and finding a non-trivial solution

$$\mathcal{L}_{norm} = h_{norm} \left[ \mathcal{W}_{jk} \mathcal{W}_{kj}^* - 2 \right]^2 \tag{5}$$





# Ensure Symmetry $\implies$ Invariance $\mathcal{L}_{inv}(\mathcal{G}_{\mathcal{W}}, \{\vec{x}_i\})$

Enforces invariance among a chosen oracle  $\vec{\varphi}(\vec{x})$ , e.g.  $I^2$ -norm  $\varphi(\vec{x}) = \sqrt{x_i^* x^i}$ ,

$$\mathcal{L}_{inv} = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}(\mathcal{F}_{\mathcal{W}} \vec{x}_i) - \vec{\varphi}(\vec{x}_i) \right]^2 = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}\left( (\mathbb{I} + \varepsilon \mathcal{W}) \vec{x}_i \right) - \vec{\varphi}(\vec{x}_i) \right]^2$$
(4)

# Ensure non-triviality $(\mathbf{x}' \neq \mathbf{x}) \implies \text{Normalization } \mathcal{L}_{\textit{norm}}(\mathcal{G}_{\mathcal{W}}, \{\vec{x_i}\})$

Enforces the normalization condition and finding a non-trivial solution

$$\mathcal{L}_{norm} = h_{norm} \left[ \mathcal{W}_{jk} \mathcal{W}_{kj}^* - 2 \right]^2 \tag{5}$$

Figure: Linear: Rotations in 2*D*,  $\varphi(\vec{x}) = |\vec{x}|$ .





## Ensure Symmetry $\implies$ Invariance $\mathcal{L}_{inv}(\mathcal{G}_{\mathcal{W}}, \{\vec{x_i}\})$

Enforces invariance among a chosen oracle  $\vec{\varphi}(\vec{x})$ , e.g.  $I^2$ -norm  $\varphi(\vec{x}) = \sqrt{x_i^* x^i}$ ,

$$\mathcal{L}_{inv} = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}(\mathcal{F}_{\mathcal{W}} \vec{x}_i) - \vec{\varphi}(\vec{x}_i) \right]^2 = h_{inv} \frac{1}{\varepsilon^2 m} \sum_{i=1}^{m} \left[ \vec{\varphi}\left( (\mathbb{I} + \varepsilon \mathcal{W}) \vec{x}_i \right) - \vec{\varphi}(\vec{x}_i) \right]^2$$
(4)

## Ensure non-triviality $(\mathbf{x}' \neq \mathbf{x}) \implies \text{Normalization } \mathcal{L}_{norm}(\mathcal{G}_{\mathcal{W}}, \{\vec{x_i}\})$

Enforces the normalization condition and finding a non-trivial solution

$$\mathcal{L}_{norm} = h_{norm} \left[ \mathcal{W}_{jk} \mathcal{W}_{kj}^* - 2 \right]^2 \tag{5}$$

Figure: Linear: Rotations in 2D,  $\varphi(\vec{x}) = |\vec{x}|.$ 



Figure: Non-linear: Squeeze mapping in 2D,  $\varphi(\vec{x}) = x^{(1)}x^{(2)}$ .



# Finding Multiple Symmetries

# Distinct Transformations $\implies$ Orthogonality $\overline{\mathcal{L}_{orth}(\mathcal{G}_{\mathcal{W}},\mathcal{G}'_{\mathcal{W}})}$

This is built on intuition from group theory where the generators of different groups obey orthogonality conditions. Enforces the orthogonality condition and finding distinct generators  $\mathbb{J}$ 

$$\mathcal{L}_{orth} = h_{orth} \left[ \mathcal{W}_{jk} \mathcal{W}_{kj}^{\prime *} \right]^2 \tag{6}$$





# Finding Multiple Symmetries

# Distinct Transformations $\implies$ Orthogonality $\mathcal{L}_{orth}(\mathcal{G}_{\mathcal{W}},\mathcal{G}'_{\mathcal{W}})$

This is built on intuition from group theory where the generators of different groups obey orthogonality conditions. Enforces the orthogonality condition and finding distinct generators  $\mathbb{J}$ 

$$\mathcal{L}_{orth} = h_{orth} \left[ \mathcal{W}_{jk} \mathcal{W}_{kj}^{\prime *} \right]^{2} \tag{6}$$

Epoch: 0 | Angles = 66.16°, 92.56°, 44.16°



Epoch: 100 | Angles = 92.02°, 90.32°, 93.08°



Epoch: 10 | Angles = 51.74°, 94.25°, 69.22°

Epoch: 300 | Angles = 90.0°, 90.0°, 90.0°









## How many distinct symmetries exist?

• Input Parameter  $\rightarrow N_g$  (number of generators). We can increase this value to search for more symmetries.





# How many distinct symmetries exist?

• Input Parameter  $\rightarrow N_g$  (number of generators). We can increase this value to search for more symmetries.

## **Example:** Rotations in 2D, $\mathbf{x} \in \mathbb{R}^2$ , $\varphi = |\mathbf{x}|$



Figure: Success (top). Failure (bottom).



Figure:  $N_g = 1, 2 \text{ Loss}$ 





## Closure $\mathcal{L}_{clos}(a_{[\alpha\beta]}^{\gamma})$

Including a closure term  $\mathcal{L}_{\textit{closure}}$  ensures the generators form a closed algebra.

$$\mathcal{L}_{clos} = h_{clos} \sum_{\alpha < \beta}^{N_g} \left[ \left[ \mathbb{J}_{\alpha}, \mathbb{J}_{\beta} \right] - \sum_{\gamma = 1}^{N_g} a_{\left[\alpha\beta\right]}^{\gamma} \mathbb{J}_{\gamma} \right]^2$$



Forestano at al. (UF)



### Closure $\mathcal{L}_{clos}(a_{[lphaeta]}^{\gamma})$

Including a closure term  $\mathcal{L}_{closure}$  ensures the generators form a closed algebra.

$$\mathcal{L}_{clos} = h_{clos} \sum_{\alpha < \beta}^{N_g} \left[ \left[ \mathbb{J}_{\alpha}, \mathbb{J}_{\beta} \right] - \sum_{\gamma = 1}^{N_g} a_{\left[\alpha\beta\right]}^{\gamma} \mathbb{J}_{\gamma} \right]^2$$







### Closure $\mathcal{L}_{clos}(a_{[lphaeta]}^{\gamma})$

Including a closure term  $\mathcal{L}_{closure}$  ensures the generators form a closed algebra.

$$\mathcal{L}_{clos} = h_{clos} \sum_{lpha < eta}^{N_{g}} \left[ \left[ \mathbb{J}_{lpha}, \mathbb{J}_{eta} 
ight] - \sum_{\gamma=1}^{N_{g}} a_{\left[lpha eta
ight]}^{\gamma} \mathbb{J}_{\gamma} 
ight]^{2}$$



Figure:  $N_g = 3$ .







### Closure $\mathcal{L}_{clos}(a_{[lphaeta]}^{\gamma})$

Including a closure term  $\mathcal{L}_{closure}$  ensures the generators form a closed algebra.

$$\mathcal{L}_{clos} = h_{clos} \sum_{\alpha < \beta}^{N_g} \left[ \left[ \mathbb{J}_{\alpha}, \mathbb{J}_{\beta} \right] - \sum_{\gamma = 1}^{N_g} a_{\left[\alpha\beta\right]}^{\gamma} \mathbb{J}_{\gamma} \right]^2$$



Figure:  $N_g = 3$ .





Figure:  $N_g = 4$ .





### Closure $\mathcal{L}_{clos}(a_{[lphaeta]}^{\gamma})$

Including a closure term  $\mathcal{L}_{\textit{closure}}$  ensures the generators form a closed algebra.

$$\mathcal{L}_{clos} = h_{clos} \sum_{\alpha < \beta}^{N_g} \left[ \left[ \mathbb{J}_{\alpha}, \mathbb{J}_{\beta} \right] - \sum_{\gamma = 1}^{N_g} a_{\left[\alpha\beta\right]}^{\gamma} \mathbb{J}_{\gamma} \right]^2$$











Figure:  $N_g = 6$ .





Figure: Lorentz group generators, O(1,3) preserving the Lorentz vector  $\varphi(\mathbf{x}) = \eta^{\nu}_{\nu} x_{\mu} x^{\nu}$ .







Figure: Lorentz group generators, O(1,3) preserving the Lorentz vector  $\varphi(\mathbf{x}) = \eta^{\nu}_{\nu} x_{\mu} x^{\nu}$ .

## Sparsity $\mathcal{L}_{sp}(\mathcal{W})$

Enforces the learned generators (axes of rotation) to be in the canonical basis (usual axes), n

$$\mathcal{L}_{sp} = h_{sp} \sum_{j \neq l \cup k \neq m}^{n} \left[ \mathcal{W}_{jk} \mathcal{W}_{lm} \right]^{2}$$
 (7)







Figure: Lorentz group generators, O(1,3) preserving the Lorentz vector  $\varphi(\mathbf{x}) = \eta^{\nu}_{\mu} \mathbf{x}_{\mu} \mathbf{x}^{\nu}$ .

### Sparsity $\mathcal{L}_{sp}(\mathcal{W})$

Enforces the learned generators (axes of rotation) to be in the canonical basis (usual axes), n

$$\mathcal{L}_{sp} = h_{sp} \sum_{j \neq l \cup k \neq m}^{n} \left[ \mathcal{W}_{jk} \mathcal{W}_{lm} \right]^{2}$$
 (7)



Figure: Canonical representation of O(1,3) with  $h_{sp} > 0$ .







Figure: Lorentz group generators, O(1,3) preserving the Lorentz vector  $\varphi(\mathbf{x}) = \eta^{\nu}_{\mu} \mathbf{x}_{\mu} \mathbf{x}^{\nu}$ .

## Sparsity $\mathcal{L}_{sp}(\mathcal{W})$

Enforces the learned generators (axes of rotation) to be in the canonical basis (usual axes), n

$$\mathcal{L}_{sp} = h_{sp} \sum_{i \neq l \cup k \neq m}^{n} \left[ \mathcal{W}_{jk} \mathcal{W}_{lm} \right]^{2}$$
 (7)





Figure: Canonical representation of O(1,3) with  $h_{sp} > 0$ .



Figure:  $N_g = 8$ , SU(3) Gell-Mann matrices preserving  $\varphi(\mathbf{x}) = |\mathbf{x}|$ .



# Understanding the Full Loss Function



Figure: The final value of the full loss function as a function of the number of generators  $N_g$  for U(n) for n=2 (left panel) and the n=3 (right panel). The colored symbols identify the dominant contribution to the loss. All hyperparameters  $h_i$  were fixed to 1 except for  $h_{sparsity}=0.05$ . The learning rate was  $10^{-3}$ .





# Summary

## ML Symmetries

- Developed a method for ML symmetries in a labelled dataset.
- ② General approach.
- Finds the complete symmetry group.
- Can be applied to realistic datasets

Learned SO(10) generators.



Figure: Loss function results for n=2,3,4,5 dimensions and  $N_g=1,\ldots,10$  generators. The cells are color coded by the base-10 logarithm of the lowest value of the loss attained during training.



Figure: Symmetric morphing of images along contours of the 16-dimensional latent flow. The images in the middle column represent the ideal digits in the dataset. The remaining six images in each row are obtained by moving along the contours.

### Outlook

