Deep Learning Symmetries in Physics and Beyond

Roy T. Forestano Konstantin T. Matchev Katia Matcheva Alexander Roman Eyup B. Unlu Sarunas Verner

University of Florida

2023 Phenomonology Symposium
Tuesday, 9 May 2023

Notation and Set-Up

$$
\begin{equation*}
\text { Invariance: } \varphi(\mathbf{g} \bullet \mathbf{x})=\varphi(\mathbf{x}) \tag{1}
\end{equation*}
$$

Labelled Dataset

n features $\quad k$ labels

$$
\begin{aligned}
& \text { sojdues } m \\
& \left(x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(n)} ; \quad y_{1}^{(1)}, \ldots, y_{1}^{(k)}\right. \\
& \left\{\begin{array}{cccc}
x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(n)} & y_{1}^{(1)}, \ldots, x_{1}^{(k)}, & y_{2}^{(1)}, \ldots, y_{2}^{(k)} \\
x_{2}^{(1)}, x_{2}, \ldots, x_{2} \\
\vdots & \ddots & \vdots & \vdots \\
x_{m}^{(1)}, x_{m}^{(2)}, \ldots, x_{m}^{(n)} ; & y_{m}^{(1)}, \ldots, y_{m}^{(k)}
\end{array}\right.
\end{aligned}
$$

III
$\left\{\mathbf{x}_{\mathbf{i}}\right\} \equiv\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{m}}\right\}$ where $\mathbf{x}_{\mathbf{i}} \in \mathbf{V}^{\mathbf{n}}$
$\left\{\mathbf{y}_{\text {i }}\right\}=\left\{\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{m}}\right\}=\underbrace{\left\{\vec{\varphi}\left(\mathbf{x}_{i}\right)\right\}}_{\begin{array}{c}\text { Orale } \\ \text { (learned or postulated) }\end{array}}$

Notation and Set-Up

Invariance: $\varphi(\mathbf{g} \bullet \mathbf{x})=\varphi(\mathbf{x})$

Labelled Dataset

n features $\quad k$ labels
m samples

$$
\left\{\begin{array}{ccc}
x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(n)} ; & y_{1}^{(1)}, \ldots, y_{1}^{(k)} \\
x_{2}^{(1)}, x_{2}^{(2)}, \ldots, x_{2}^{(n)} ; & y_{2}^{(1)}, \ldots, y_{2}^{(k)} \\
\vdots & \ddots & \vdots \\
\vdots & \ddots & \vdots \\
x_{m}^{(1)}, x_{m}^{(2)}, \ldots, x_{m}^{(n)} ; & y_{m}^{(1)}, \ldots, y_{m}^{(k)}
\end{array}\right.
$$

III
$\left\{\mathbf{x}_{\mathbf{i}}\right\} \equiv\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{m}}\right\}$ where $\mathbf{x}_{\mathbf{i}} \in \mathbf{V}^{\mathbf{n}}$
$\left\{\mathbf{y}_{\mathbf{i}}\right\}_{\text {a }}=\left\{\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{\mathbf{2}}, \ldots, \mathbf{y}_{\mathbf{m}}\right\}=\underbrace{\left\{\vec{\varphi}\left(\mathbf{x}_{i}\right)\right\}}_{\text {Oracle }}$
(learned or postulated)

Transformation

Transformation on feature space:

$$
\mathbf{g}: \mathbf{x}_{i} \rightarrow \mathbf{x}_{i}^{\prime}
$$

Transformation is a symmetry if:

$$
\varphi\left(\mathbf{x}_{i}^{\prime}\right) \equiv \varphi\left(g\left(\mathbf{x}_{i}\right)\right)=\varphi\left(\mathbf{x}_{i}\right)
$$

Goal: Find transformations $\mathrm{g}\left(\mathrm{x}_{i}\right)$ which preserve the oracle φ.

Notation and Set-Up

Invariance: $\varphi(\mathbf{g} \bullet \mathbf{x})=\varphi(\mathbf{x})$

Labelled Dataset

n features

k labels
m samples
$\left\{\begin{array}{ccc}x_{1}^{(1)}, x_{1}^{(2)}, \ldots, x_{1}^{(n)} ; & y_{1}^{(1)}, \ldots, y_{1}^{(k)} \\ x_{2}^{(1)}, x_{2}^{(2)}, \ldots, x_{2}^{(n)} ; & y_{2}^{(1)}, \ldots, y_{2}^{(k)} \\ \vdots & \vdots & \ddots \\ \vdots & \vdots & \ddots \\ \vdots \\ x_{m}^{(1)}, x_{m}^{(2)}, \ldots, x_{m}^{(n)} ; & y_{m}^{(1)}, \ldots, y_{m}^{(k)}\end{array}\right.$

III
$\left\{\mathbf{x}_{\mathbf{i}}\right\} \equiv\left\{\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}, \ldots, \mathbf{x}_{\mathbf{m}}\right\}$ where $\mathbf{x}_{\mathbf{i}} \in \mathbf{V}^{\mathbf{n}}$
$\underset{\mathbf{y}_{\mathbf{i}}}{\left\{\mathbf{y}_{2}\right.}=\left\{\mathbf{y}_{\mathbf{1}}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathbf{m}}\right\}=\underbrace{\left\{\vec{\varphi}\left(\mathbf{x}_{i}\right)\right\}}_{\text {Oracle }}$
(learned or postulated)

Transformation

Transformation on feature space:

$$
\mathbf{g}: \mathbf{x}_{i} \rightarrow \mathbf{x}_{i}^{\prime}
$$

Transformation is a symmetry if:

$$
\varphi\left(\mathbf{x}_{i}^{\prime}\right) \equiv \varphi\left(g\left(\mathbf{x}_{i}\right)\right)=\varphi\left(\mathbf{x}_{i}\right)
$$

Goal: Find transformations $\mathrm{g}\left(\mathrm{x}_{i}\right)$ which preserve the oracle φ. In physics, φ represents a conserved quantity.

\mathbf{g}	φ
Time Translation $\left(T_{0}\right)$	E
Rotation $\left(R_{i j}\right)$	\vec{L}
Lorentz $\left(K_{\mu \nu}\right)$	$T^{\mu \nu}$

Parameterization of Symmetry Transformations

$$
\begin{array}{cc}
\text { Linear } \\
\mathbf{x}^{\prime}=(\mathbb{I}+\epsilon \mathcal{W}) \mathbf{x} \tag{2}\\
\mathbb{I} \equiv & \text { identity matrix } \\
\mathcal{W} \equiv & \begin{array}{c}
n \times n \text { matrix to be } \\
\text { learned by our method }
\end{array}
\end{array}
$$

Parameterization of Symmetry Transformations

$$
\begin{array}{cc}
\text { Linear } \\
\mathbf{x}^{\prime}=(\mathbb{I}+\epsilon \mathcal{W}) \mathbf{x} \tag{2}\\
\mathbb{I} \equiv & \text { identity matrix } \\
\mathcal{W} \equiv & \begin{array}{c}
n \times n \text { matrix to be } \\
\text { learned by our method }
\end{array}
\end{array}
$$

Figure: Visualization: $S U(2)$ generators for a single layer linear model using the L2-norm oracle $\varphi(\mathbf{x})=|\mathbf{x}|$.

Parameterization of Symmetry Transformations

$$
\begin{array}{cc}
\text { Linear } \\
\mathbf{x}^{\prime}=(\mathbb{I}+\epsilon \mathcal{W}) \mathbf{x} \tag{2}\\
\mathbb{I} \equiv & \text { identity matrix } \\
\mathcal{W} \equiv & \begin{array}{c}
n \times n \text { matrix to be } \\
\text { learned by our method }
\end{array}
\end{array}
$$

Figure: Visualization: $S U(2)$ generators for a single layer linear model using the L2-norm oracle $\varphi(\mathbf{x})=|\mathbf{x}|$.

Non-Linear

$$
\rightarrow \begin{aligned}
& \mathbf{x}^{\prime} \text { or } \\
& \frac{\mathbf{x}^{\prime}-\mathbf{x}}{\epsilon}
\end{aligned}
$$

$N N$ whose parameters are to be learned by our method

Parameterization of Symmetry Transformations

Linear

$$
\begin{equation*}
\mathbf{x}^{\prime}=(\mathbb{I}+\epsilon \mathcal{W}) \mathbf{x} \tag{2}
\end{equation*}
$$

$\mathbb{I} \equiv$ identity matrix

$$
\mathcal{W} \equiv \quad \begin{gathered}
n \times n \text { matrix to be } \\
\text { learned by our method }
\end{gathered}
$$

Figure: Visualization: $S U(2)$ generators for a single layer linear model using the L2-norm oracle $\varphi(\mathbf{x})=|\mathbf{x}|$.

Non-Linear

$x \rightarrow$

$$
\rightarrow \begin{aligned}
& x^{\prime} \text { or } \\
& \frac{x^{\prime}-x}{\epsilon}
\end{aligned}
$$

$N N$ whose parameters are to be learned by our method

Figure: Visualization: Grid vector transformation representation for a deep linear layered model using the $L 1$-norm oracle $\varphi(\mathrm{x})=\left|\mathrm{x}^{(1)}\right|+\left|\mathrm{x}^{(2)}\right|$.

Loss Function

Ensure Symmetry \Longrightarrow Invariance $\mathcal{L}_{\text {inv }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$

Enforces invariance among a chosen oracle $\vec{\varphi}(\vec{x})$, e.g. I^{2}-norm $\varphi(\vec{x})=\sqrt{x_{i}^{*} x^{i}}$,

$$
\begin{equation*}
\mathcal{L}_{i n v}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left(\mathcal{F} \mathcal{W} \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left((\mathbb{I}+\varepsilon \mathcal{W}) \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2} \tag{4}
\end{equation*}
$$

Loss Function

Ensure Symmetry \Longrightarrow Invariance $\mathcal{L}_{\text {inv }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$

Enforces invariance among a chosen oracle $\vec{\varphi}(\vec{x})$, e.g. 1^{2}-norm $\varphi(\vec{x})=\sqrt{x_{i}^{*} x^{i}}$,

$$
\begin{equation*}
\mathcal{L}_{i n v}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left(\mathcal{F} \mathcal{W} \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left((\mathbb{I}+\varepsilon \mathcal{W}) \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2} \tag{4}
\end{equation*}
$$

Ensure non-triviality $\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right) \Longrightarrow$ Normalization $\mathcal{L}_{\text {norm }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$
Enforces the normalization condition and finding a non-trivial solution

$$
\begin{equation*}
\mathcal{L}_{\text {norm }}=h_{\text {norm }}\left[\mathcal{W}_{j k} \mathcal{W}_{k j}^{*}-2\right]^{2} \tag{5}
\end{equation*}
$$

Loss Function

Ensure Symmetry \Longrightarrow Invariance $\mathcal{L}_{\text {inv }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$

Enforces invariance among a chosen oracle $\vec{\varphi}(\vec{x})$, e.g. I^{2}-norm $\varphi(\vec{x})=\sqrt{x_{i}^{*} x^{i}}$,

$$
\begin{equation*}
\mathcal{L}_{i n v}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left(\mathcal{F} \mathcal{W} \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left((\mathbb{I}+\varepsilon \mathcal{W}) \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2} \tag{4}
\end{equation*}
$$

Ensure non-triviality $\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right) \Longrightarrow$ Normalization $\mathcal{L}_{\text {norm }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$
Enforces the normalization condition and finding a non-trivial solution

$$
\begin{equation*}
\mathcal{L}_{\text {norm }}=h_{\text {norm }}\left[\mathcal{W}_{j k} \mathcal{W}_{k j}^{*}-2\right]^{2} \tag{5}
\end{equation*}
$$

Figure: Linear: Rotations in $2 D$, $\varphi(\vec{x})=|\vec{x}|$.

Loss Function

Ensure Symmetry \Longrightarrow Invariance $\mathcal{L}_{\text {inv }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$

Enforces invariance among a chosen oracle $\vec{\varphi}(\vec{x})$, e.g. 1^{2}-norm $\varphi(\vec{x})=\sqrt{x_{i}^{*} x^{i}}$,

$$
\begin{equation*}
\mathcal{L}_{i n v}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left(\mathcal{F}_{\mathcal{W}} \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2}=h_{i n v} \frac{1}{\varepsilon^{2} m} \sum_{i=1}^{m}\left[\vec{\varphi}\left((\mathbb{I}+\varepsilon \mathcal{W}) \vec{x}_{i}\right)-\vec{\varphi}\left(\vec{x}_{i}\right)\right]^{2} \tag{4}
\end{equation*}
$$

Ensure non-triviality $\left(\mathbf{x}^{\prime} \neq \mathbf{x}\right) \Longrightarrow$ Normalization $\mathcal{L}_{\text {norm }}\left(\mathcal{G}_{\mathcal{W}},\left\{\vec{x}_{i}\right\}\right)$
Enforces the normalization condition and finding a non-trivial solution

$$
\begin{equation*}
\mathcal{L}_{\text {norm }}=h_{\text {norm }}\left[\mathcal{W}_{j k} \mathcal{W}_{k j}^{*}-2\right]^{2} \tag{5}
\end{equation*}
$$

Figure: Linear: Rotations in $2 D$, $\varphi(\vec{x})=|\vec{x}|$.

Figure: Non-linear: Squeeze mapping in $2 D, \varphi(\vec{x})=x^{(1)} x^{(2)}$.

Finding Multiple Symmetries

Distinct Transformations \Longrightarrow Orthogonality $\mathcal{L}_{\text {orth }}\left(\mathcal{G}_{\mathcal{W}}, \mathcal{G}_{w}^{\prime}\right)$

This is built on intuition from group theory where the generators of different groups obey orthogonality conditions. Enforces the orthogonality condition and finding distinct generators \mathbb{J}

$$
\begin{equation*}
\mathcal{L}_{\text {orth }}=h_{\text {orth }}\left[\mathcal{W}_{j k} \mathcal{W}_{k j}^{\prime *}\right]^{2} \tag{6}
\end{equation*}
$$

Finding Multiple Symmetries

Distinct Transformations \Longrightarrow Orthogonality $\mathcal{L}_{\text {orth }}\left(\mathcal{G}_{\mathcal{W}}, \mathcal{G}_{w}^{\prime}\right)$

This is built on intuition from group theory where the generators of different groups obey orthogonality conditions. Enforces the orthogonality condition and finding distinct generators \mathbb{J}

$$
\begin{equation*}
\mathcal{L}_{\text {orth }}=h_{\text {orth }}\left[\mathcal{W}_{j k} \mathcal{W}_{k j}^{\prime *}\right]^{2} \tag{6}
\end{equation*}
$$

Epoch: $0 \mid$ Angles $=66.16^{\circ}, 92.56^{\circ}, 44.16^{\circ}$

Epoch: $100 \mid$ Angles $=92.02^{\circ}, 90.32^{\circ}, 93.08^{\circ}$

Epoch: $10 \mid$ Angles $=51.74^{\circ}, 94.25^{\circ}, 69.22^{\circ}$

Epoch: $300 \mid$ Angles $=90.0^{\circ}, 90.0^{\circ}, 90.0^{\circ}$

司 >4 三 $>$ 프

How many distinct symmetries exist?

- Input Parameter $\rightarrow N_{g}$ (number of generators). We can increase this value to search for more symmetries.

How many distinct symmetries exist?

- Input Parameter $\rightarrow N_{g}$ (number of generators). We can increase this value to search for more symmetries.

Example: Rotations in $2 D, \mathbf{x} \in \mathbb{R}^{2}, \varphi=|\mathbf{x}|$

Figure: Success (top). Failure (bottom).

Figure: $N_{g}=1,2$ Loss

Rotations in 4 dimensions $\left(\mathbf{x} \in \mathbb{R}^{4}, \varphi=|\mathbf{x}|\right)$

Closure $\mathcal{L}_{\text {clos }}\left(a_{[\alpha \beta]}^{\gamma}\right)$
Including a closure term $\mathcal{L}_{\text {closure }}$ ensures the generators form a closed algebra.

$$
\mathcal{L}_{\text {clos }}=h_{\text {clos }} \sum_{\alpha<\beta}^{N_{g}}\left[\left[\mathbb{J}_{\alpha}, \mathbb{J}_{\beta}\right]-\sum_{\gamma=1}^{N_{g}} a_{[\alpha \beta]}^{\gamma} \mathbb{J}_{\gamma}\right]^{2}
$$

Rotations in 4 dimensions $\left(\mathbf{x} \in \mathbb{R}^{4}, \varphi=|\mathbf{x}|\right)$

Closure $\mathcal{L}_{\text {clos }}\left(a_{[\alpha \beta]}^{\gamma}\right)$

Including a closure term $\mathcal{L}_{\text {closure }}$ ensures the generators form a closed algebra.

$$
\mathcal{L}_{\text {clos }}=h_{\text {clos }} \sum_{\alpha<\beta}^{N_{g}}\left[\left[\mathbb{J}_{\alpha}, \mathbb{J}_{\beta}\right]-\sum_{\gamma=1}^{N_{g}} a_{[\alpha \beta]}^{\gamma} \mathbb{J}_{\gamma}\right]^{2}
$$

Figure: $N_{g}=3$.

Rotations in 4 dimensions $\left(\mathbf{x} \in \mathbb{R}^{4}, \varphi=|\mathbf{x}|\right)$

Closure $\mathcal{L}_{\text {clos }}\left(a_{[\alpha \beta]}^{\gamma}\right)$

Including a closure term $\mathcal{L}_{\text {closure }}$ ensures the generators form a closed algebra.

$$
\mathcal{L}_{\text {clos }}=h_{\text {clos }} \sum_{\alpha<\beta}^{N_{g}}\left[\left[\mathbb{J}_{\alpha}, \mathbb{J}_{\beta}\right]-\sum_{\gamma=1}^{N_{g}} a_{[\alpha \beta]}^{\gamma} \mathbb{J}_{\gamma}\right]^{2}
$$

Figure: $N_{g}=3$.

Figure: $N_{g}=4$.

Rotations in 4 dimensions $\left(\mathbf{x} \in \mathbb{R}^{4}, \varphi=|\mathbf{x}|\right)$

Closure $\mathcal{L}_{\text {clos }}\left(a_{[\alpha \beta]}^{\gamma}\right)$

Including a closure term $\mathcal{L}_{\text {closure }}$ ensures the generators form a closed algebra.

$$
\mathcal{L}_{\text {clos }}=h_{\text {clos }} \sum_{\alpha<\beta}^{N_{g}}\left[\left[\mathbb{J}_{\alpha}, \mathbb{J}_{\beta}\right]-\sum_{\gamma=1}^{N_{g}} a_{[\alpha \beta]}^{\gamma} \mathbb{J}_{\gamma}\right]^{2}
$$

Figure: $N_{g}=3$.

Figure: $N_{g}=4$.

Rotations in 4 dimensions $\left(\mathbf{x} \in \mathbb{R}^{4}, \varphi=|\mathbf{x}|\right)$

Closure $\mathcal{L}_{\text {clos }}\left(a_{[\alpha \beta]}^{\gamma}\right)$

Including a closure term $\mathcal{L}_{\text {closure }}$ ensures the generators form a closed algebra.

$$
\mathcal{L}_{\text {clos }}=h_{\text {clos }} \sum_{\alpha<\beta}^{N_{g}}\left[\left[\mathbb{J}_{\alpha}, \mathbb{J}_{\beta}\right]-\sum_{\gamma=1}^{N_{g}} a_{[\alpha \beta]}^{\gamma} \mathbb{J}_{\gamma}\right]^{2}
$$

Figure: $N_{g}=3$.

Figure: $N_{g}=4$.

Figure: $N_{g}=6$.

Other Examples: Lorentz Group $O(1,3)$ and Unitary Groups $U(n)$

Figure: Lorentz group generators, $O(1,3)$ preserving the Lorentz vector $\varphi(\mathbf{x})=\eta_{\mu}^{\nu} x_{\mu} x^{\nu}$.

Other Examples: Lorentz Group $O(1,3)$ and Unitary Groups $U(n)$

Figure: Lorentz group generators, $O(1,3)$ preserving the Lorentz vector
$\varphi(\mathbf{x})=\eta_{\mu}^{\nu} x_{\mu} x^{\nu}$.

Sparsity $\mathcal{L}_{s p}(\mathcal{W})$

Enforces the learned generators (axes of rotation) to be in the canonical basis (usual axes),

$$
\begin{align*}
& \text { axes }), \tag{7}\\
& \mathcal{L}_{s p}=h_{s p} \sum_{j \neq \mid \cup k \neq m}^{n}\left[\mathcal{W}_{j k} \mathcal{W}_{l m}\right]^{2} .
\end{align*}
$$

Other Examples: Lorentz Group $O(1,3)$ and Unitary Groups $U(n)$

Figure: Lorentz group generators, $O(1,3)$ preserving the Lorentz vector
$\varphi(\mathbf{x})=\eta_{\mu}^{\nu} x_{\mu} x^{\nu}$.

Figure: Canonical representation of $O(1,3)$ with $h_{s p}>0$.

Sparsity $\mathcal{L}_{s p}(\mathcal{W})$

Enforces the learned generators (axes of rotation) to be in the canonical basis (usual axes),

$$
\begin{align*}
& \text { axes }), \tag{7}\\
& \mathcal{L}_{s p}=h_{s p} \\
& \sum_{j \neq \| \cup k \neq m}^{n}\left[\mathcal{W}_{j k} \mathcal{W}_{l m}\right]^{2}
\end{align*}
$$

Other Examples: Lorentz Group $O(1,3)$ and Unitary Groups $U(n)$

Figure: Lorentz group generators, $O(1,3)$ preserving the Lorentz vector
$\varphi(\mathbf{x})=\eta_{\mu}^{\nu} x_{\mu} x^{\nu}$.

Sparsity $\mathcal{L}_{\text {sp }}(\mathcal{W})$

Enforces the learned generators (axes of rotation) to be in the canonical basis (usual axes),

$$
\begin{align*}
& \text { axes }), \tag{7}\\
& \mathcal{L}_{s p}=h_{s p} \sum_{j \neq \mid \cup k \neq m}^{n}\left[\mathcal{W}_{j k} \mathcal{W}_{l m}\right]^{2}
\end{align*}
$$

Figure: Canonical representation of $O(1,3)$ with $h_{s p}>0$.

Figure: $N_{g}=8, S U(3)$ Gell-Mann matrices preserving $\varphi(\mathbf{x})=|\mathbf{x}|$.

Understanding the Full Loss Function

Figure: The final value of the full loss function as a function of the number of generators N_{g} for $U(n)$ for $n=2$ (left panel) and the $n=3$ (right panel). The colored symbols identify the dominant contribution to the loss. All hyperparameters h_{i} were fixed to 1 except for $h_{\text {sparsity }}=0.05$. The learning rate was 10^{-3}.

Summary

ML Symmetries

(1) Developed a method for ML symmetries in a labelled dataset.
(c) General approach.

- Finds the complete symmetry group.
(4) Can be applied to realistic datasets

Learned SO(10) generators.

Figure: Loss function results for $n=2,3,4,5$ dimensions and $N_{g}=1, \ldots, 10$ generators. The cells are color coded by the base-10 logarithm of the lowest value of the loss attained during training.

Figure: Symmetric morphing of images along contours of the $\mathbf{1 6}$-dimensional latent flow. The images in the middle column represent the ideal digits in the dataset. The remaining six images in each row are obtained by moving along the contours.

UF FILORIDA

Outlook

