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Notation and Set-Up

Invariance: φ(g • x) = φ(x) (1)

Labelled Dataset
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≡

{xi} ≡ {x1, x2, . . . , xm} where xi ∈ Vn

{yi} = {y1, y2, . . . , ym} = {φ⃗(xi )}︸ ︷︷ ︸
Oracle

(learned or postulated)

Transformation
Transformation on feature space:

g : xi → x′i

Transformation is a symmetry if:

φ(x′i ) ≡ φ(g(xi )) = φ(xi )

Goal: Find transformations
g(xi ) which preserve the oracle φ.

In physics, φ represents a
conserved quantity.

g φ
Time Translation (T0) E

Rotation (Rij ) L⃗
Lorentz (Kµν) Tµν
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Parameterization of Symmetry Transformations

Linear

x′ = (I+ ϵW) x (2)

I ≡ identity matrix

W ≡ n × n matrix to be
learned by our method

Figure: Visualization: SU(2) generators for a
single layer linear model using the L2-norm
oracle φ(x) = |x|.

Non-Linear

x → ︸ ︷︷ ︸
NN whose parameters are

to be learned by our method

→ x′ or
x′−x
ϵ

(3)
Figure: Visualization: Grid vector
transformation representation for a deep linear
layered model using the L1-norm oracle
φ(x) = |x(1)|+ |x(2)|.
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Loss Function

Ensure Symmetry =⇒ Invariance Linv (GW , {x⃗i})
Enforces invariance among a chosen oracle φ⃗(x⃗), e.g. l2-norm φ(x⃗) =

√
x∗i x

i ,

Linv = hinv
1

ε2m

m∑
i=1

[φ⃗(FW x⃗i )− φ⃗(x⃗i )]
2 = hinv

1

ε2m

m∑
i=1

[φ⃗ ((I+ εW) x⃗i )− φ⃗(x⃗i )]
2 (4)

Ensure non-triviality (x′ ̸= x) =⇒ Normalization Lnorm(GW , {x⃗i})
Enforces the normalization condition and finding a non-trivial solution

Lnorm = hnorm
[
WjkW∗

kj − 2
]2

(5)

Figure: Linear: Rotations in 2D,
φ(x⃗) = |x⃗ |.

Figure: Non-linear: Squeeze mapping
in 2D, φ(x⃗) = x(1)x(2).

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 4 / 11
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Finding Multiple Symmetries

Distinct Transformations =⇒ Orthogonality Lorth(GW ,G ′
W)

This is built on intuition from group theory where the generators of different groups obey
orthogonality conditions. Enforces the orthogonality condition and finding distinct generators J

Lorth = horth

[
WjkW ′∗

kj

]2
(6)

Figure: The axes of the eigenvectors of the three generators found at intermediate
stages of the training: after 1 epoch (top left), after 10 epochs (top right), after
100 epochs (bottom left), and after 300 epochs (bottom right). For convenience,
at the top of each panel we list the angle (in degrees) between each pair of axes.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 5 / 11
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How many distinct symmetries exist?

Input Parameter → Ng (number of generators). We can increase this
value to search for more symmetries.

Example: Rotations in 2D, x ∈ R2, φ = |x|

Figure: Success (top). Failure (bottom). Figure: Ng = 1, 2 Loss

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 6 / 11
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Rotations in 4 dimensions (x ∈ R4, φ = |x|)
Closure Lclos(a

γ
[αβ]

)

Including a closure term Lclosure ensures the
generators form a closed algebra.

Lclos = hclos

Ng∑
α<β

[Jα, Jβ]− Ng∑
γ=1

aγ
[αβ]

Jγ

2

Figure: Ng = 3.

Figure: Ng = 4.
Figure: Ng = 6.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 7 / 11
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Other Examples: Lorentz Group O(1, 3) and Unitary Groups U(n)

Figure: Lorentz group generators, O(1, 3)
preserving the Lorentz vector
φ(x) = ηνµxµx

ν .

Sparsity Lsp(W)

Enforces the learned generators (axes of
rotation) to be in the canonical basis
(usual axes),

Lsp = hsp

n∑
j ̸=l∪k ̸=m

[
WjkWlm

]2
(7)

−→

Figure: Canonical representation of
O(1, 3) with hsp > 0.

Figure: Ng = 8, SU(3) Gell-Mann
matrices preserving φ(x) = |x|.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 8 / 11
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Understanding the Full Loss Function

Figure: The final value of the full loss function as a function of the number of generators Ng

for U(n) for n = 2 (left panel) and the n = 3 (right panel). The colored symbols identify the
dominant contribution to the loss. All hyperparameters hi were fixed to 1 except for
hsparsity = 0.05. The learning rate was 10−3.
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Summary

ML Symmetries

1 Developed a
method for ML
symmetries in a
labelled dataset.

2 General
approach.

3 Finds the
complete
symmetry group.

4 Can be applied to
realistic datasets

Learned SO(10) generators.

Figure: Loss function results for n = 2, 3, 4, 5
dimensions and Ng = 1, . . . , 10 generators. The cells are
color coded by the base-10 logarithm of the lowest
value of the loss attained during training.

Figure: Symmetric morphing of images along contours
of the 16-dimensional latent flow. The images in the
middle column represent the ideal digits in the dataset.
The remaining six images in each row are obtained by
moving along the contours.

Forestano at al. (UF) Deep Learning Symmetries in Physics 2023 PHENO 10 / 11
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Outlook

Future Interests
1 Exceptional groups G2,F4,E6.

2 Finding subalgebras:

1 Factoring
2 Postprocessing
3 Cartan subalgebra
4 Isomorphic mappings between

subalgebras

3 Symmetry breaking.

4 Real data applications.

Learned F4 generators.

Orthogonal and
Lorentz groups.

Code.

Unitary groups.

Autoencoded
MNIST digits.
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