

Characterizing the Galactic Center γ-ray Excess using Probabilistic Programming

Yitian Sun

with Siddharth Mishra-Sharma, Tracy Slatyer, and Yuqing Wu

May 9th | PHENO 2023

Characterizing the Galactic Center γ-ray Excess using Probabilistic Programming

Yitian Sun

with Siddharth Mishra-Sharma, Tracy Slatyer, and Yuqing Wu

Part II

May 9th | PHENO 2023

Characterizing the Galactic Center γ-ray Excess using Probabilistic Programming

Yitian Sun

with Siddharth Mishra-Sharma, Tracy Slatyer, and Yuqing Wu

Part II

May 9th | PHENO 2023

- Extended, ~ spherical morphology.
- Centered around 2 GeV, may continue higher.

- Extended, ~ spherical morphology.
- Centered around 2 GeV, may continue higher.

- Extended, ~ spherical morphology.
- Centered around 2 GeV, may continue higher.

Part I: What is the GCE

[2] Macias, Oscar, et al. "Strong evidence that the galactic bulge is shining in gamma rays." Journal of Cosmology and Astroparticle Physics 2019.09 (2019): 042.

Part I: What is the GCE

[2] Macias, Oscar, et al. "Strong evidence that the galactic bulge is shining in gamma rays." Journal of Cosmology and Astroparticle Physics 2019.09 (2019): 042.

Part I: What is the GCE made of

dark matter

unresolved pulsar

Part I: What is the GCE made of

unresolved pulsar

Part I: What is the GCE made of

Part I: What is the GCE made of

dark matter

| 1 | 1 | 1 | 1 | 1 | source |

unresolved pulsar

point source

Part I: What is the GCE made of

unresolved pulsar

point source

The point source photon count distribution is Non-Poissonian.

How is the GCE

How is the GCE analyzed

How is the GCE analyzed

- Previous: Inflexible, singular templates for PSs:
 - Likelihood (with point sources) quite computationally expensive.
 - Marginalizing over too many parameters
 - = curse of dimensionality.

How is the GCE analyzed

- Previous: Inflexible, singular templates for PSs:
 - Likelihood (with point sources) quite computationally expensive.
 - Marginalizing over too many parameters
 = curse of dimensionality.
- However, fits to the GCE are not great (compared to expected likelihood of a perfect fit, e.g.).
 - Need more flexible templates for both foreground & source.
 - Need a unified framework to understand systematics.
 - Need to avoid the curse of dimensionality.

are frameworks for doing inference on probabilistic models

are frameworks for doing inference on probabilistic models

Example: inferring expected photon counts

are frameworks for doing inference on probabilistic models

Example: inferring expected photon counts

are frameworks for doing inference on probabilistic models

Example: inferring expected photon counts

All first class objects / primitives

Part II: Prob. Programs: Flexible model

e.g. π^0 + brem. templates:

Stochastic Variational Inference

Part II: Prob. Programs: Avoiding the curse of dimensionality

- Guess the posterior q_{λ} .
- Optimize parameters λ so that q_{λ} looks like the true posterior.
- Equivalent to maximizing the ELBO (evidence lower bound).

Stochastic Variational Inference

Part II: Prob. Programs: Avoiding the curse of dimensionality

- Guess the posterior q_{λ} .
- Optimize parameters λ so that q_{λ} looks like the true posterior.
- Equivalent to maximizing the ELBO (evidence lower bound).

$$\log \text{ evidence} = \mathbb{E}_{q_{\lambda}} \left[\text{likelihood} \cdot \text{prior} \right] + \mathbb{H}[q_{\lambda}] + D_{\text{KL}}(q_{\lambda}||\text{post.})$$

Stochastic Variational Inference

Part II: Prob. Programs: Avoiding the curse of dimensionality

- Guess the posterior q_{λ} .
- Optimize parameters λ so that q_{λ} looks like the true posterior.
- Equivalent to maximizing the ELBO (evidence lower bound).

$$\log \text{ evidence} = \mathbb{E}_{q_{\lambda}} \left[\text{likelihood} \cdot \text{prior} \right] + \mathbb{H}[q_{\lambda}] + D_{\text{KL}}(q_{\lambda}||\text{post.})$$

- Parametrize q_{λ} as a inverse autoregressive flow (IAF) on some base distribution...
 - …allowing an expressive guess posterior
 - ...and a way of estimating $\mathbb{E}_{q_{\lambda}}[\ldots]$ in training.

An example run

< 10 mins to fit & sample (50000 samples)

(In comparison, NUTS HMC takes ~ 5 hours)

both using a A100 GPU

Summary

In order to better fit the GCE and understand the its systematics...

We built a probabilistic programming model with flexible template for point source and diffuse emission, and were able to quickly obtain posterior distribution using SVI.

Summary

In order to better fit the GCE and understand the its systematics...

Step 1. We built a probabilistic programming model with flexible template for point source and diffuse emission, and were able to quickly obtain posterior distribution using SVI.

Step 2. Profit?