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Part I: What is the GCE

>15° ~ 2 GeV
• Extended, ~ spherical morphology.

• Centered around 2 GeV, may continue higher.

[1] Murgia, Simona. "The Fermi–LAT Galactic Center Excess: Evidence of Annihilating Dark Matter?." Annual Review of Nuclear and Particle 
Science 70 (2020): 455-483.
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The point source photon count distribution is 
Non-Poissonian.
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How is the GCE analyzed

• Previous: Inflexible, singular templates for PSs:

• Likelihood (with point sources) quite computationally 

expensive.

• Marginalizing over too many parameters                     

= curse of dimensionality.

• However, fits to the GCE are not great (compared to 

expected likelihood of a perfect fit, e.g.).

• Need more flexible templates for both foreground & 

source.

• Need a unified framework to understand systematics.

• Need to avoid the curse of dimensionality.
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• Guess the posterior .


• Optimize parameters  so that  looks like the true posterior.


• Equivalent to maximizing the ELBO (evidence lower bound).

qλ

λ qλ

Stochastic Variational Inference
Part II: Prob. Programs: Avoiding the curse of dimensionality
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• Guess the posterior .


• Optimize parameters  so that  looks like the true posterior.


• Equivalent to maximizing the ELBO (evidence lower bound).

qλ

λ qλ

log evidence = 𝔼qλ [likelihood ⋅ prior] + ℍ[qλ] + DKL(qλ | |post.)

• Parametrize  as a inverse autoregressive flow (IAF) on some 
base distribution…

• …allowing an expressive guess posterior


• …and a way of estimating  in training.

qλ

𝔼qλ
[…]

Stochastic Variational Inference
Part II: Prob. Programs: Avoiding the curse of dimensionality



An example run
< 10 mins to fit & sample (50000 samples)

(In comparison, NUTS HMC takes ~ 5 hours)
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both using a A100 GPU
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Summary

In order to better fit the GCE and understand the 
its systematics…


Step 1. We built a probabilistic programming 
model with flexible template for point source and 
diffuse emission, and were able to quickly obtain 
posterior distribution using SVI.


Step 2. Profit?
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