Probing Type-II Seesaw Mechanism in Alternative $U(1)_X$ Model

Puja Das (Univ. Of Alabama)

In collaboration with

Arindam Das(Hokkaido Univ.) , Nobuchika Okada(Univ. of Alabama)

Talk@ Pheno2023

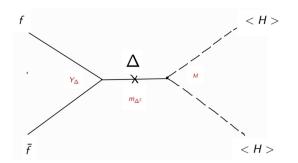
May 9th, 2023

Introduction and Motivation:-

- ightharpoonup One of the problems of Standard Model: Origin of ν mass
- One simple solution: Type-II seesaw mechanism
- Investigation of doubly charged scalar production in Type-II seesaw at LHC.
- ▶ Probe Type-II seesaw with $\Delta^{\pm\pm}$ pair production, followed by it's decay to the same sign dilepton $(\Delta^{\pm\pm} \to I^{\pm}I^{\pm})$

Type II Seesaw Mechanism

Originally proposed by: —
 Lazarides, Shafi, Wetterich, NPB 181 (1981), 287-300;
 Mahapatra, Senjanović, PRD 23 (1981), 161.


Particle	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$
qL	3	2	$\frac{1}{6}$
u_R d_R	3	1	6 2 3
d_R	3	1	$-\frac{1}{3}$
I _L	1	2	$-\frac{1}{2}$
e _R	1	1	-1
Н	1	2	$\frac{1}{2}$
Δ	1	3	$\bar{1}$

Type II Seesaw Mechanism continued

Massive BSM Triplet scalar Δ mixing considered to explain SM ν 's small mass, where

$$\Delta = \begin{bmatrix} \frac{1}{\sqrt{2}}\Delta_{+} & \Delta_{++} \\ \Delta_{0} & -\frac{1}{\sqrt{2}}\Delta_{+} \end{bmatrix}$$

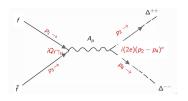
Symmetry breaking generates Majorana mass $\frac{Y_{\Delta}Mv^2}{m_{\Delta}^2}$

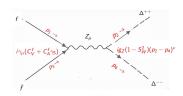
$U(1)_X$ extended SM with Type-II Seesaw Mechanism:-

Symmetry imposed is $SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)_X$ for this model. Ref:-Okada, Seto, PRD105 (2022) 12

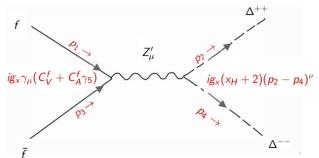
lacksquare 3 BSM u_R , 2 doublet Higgs, 1 triplet Higgs and 1 scalar

considered in this model.

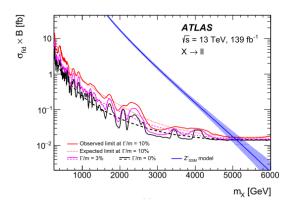

	nisiacica ii			
	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_X$
q_L^i	3	2	$\frac{1}{6}$	$\frac{1}{6}x_{H} + \frac{1}{3}$
u_R^i	3 3 3	1	16 2 3	$\begin{bmatrix} \frac{1}{6}X_H + \frac{1}{3} \\ \frac{2}{3}X_H + \frac{1}{3} \end{bmatrix}$
d_R^i	3	1	-1	$\left -\frac{1}{3}x_{H} + \frac{1}{3} \right $
I <u>'</u>	1	2		$-\frac{1}{2}x_{H}-1$
e_R^i	1	1	-1	$-x_{H} - 1$
ν_R^1	1	1	-1	-4
ν_R^2	1	1	-1	-4
$\begin{array}{c} u_R^i \\ d_R^i \\ I_L^i \\ e_R^i \\ \nu_R^1 \\ \nu_R^2 \\ \nu_R^3 \end{array}$	1	1	-1	5
Φ ₁	1	2	$\frac{1}{2}$	$\frac{1}{2}x_{H}+1$
Φ_1 Φ_2	1	2	$\frac{\frac{1}{2}}{\frac{1}{2}}$	$\begin{bmatrix} -\frac{1}{2}X_H \end{bmatrix}$
Δ_3	1	3	$\overline{1}$	$ \frac{\frac{1}{2}x_H + 1}{\frac{1}{2}x_H} $ $ x_H + 2 $
Φ_X	1	1	0	1


Alternate Charge Assigned-DM

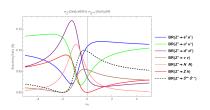
Type-II Seesaw scalar For $U(1)_X$ breaking

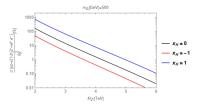

Δ pair production at LHC:-

1. SM gauge boson mediated:-



2. New Process Z' mediated:-


Constraint on Z' boson production from LHC Run-2:-

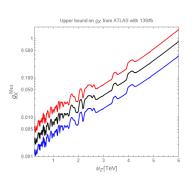
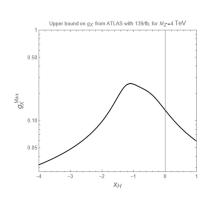

- ▶ ATLAS and LHC searching for narrow resonance (Z' boson) with dileptons as final states (e^{\pm}, μ^{\pm})
- lacktriangle The upper bound on $\sigma(pp o Z') B(Z' o e^\pm, \mu^\pm)$ obtained

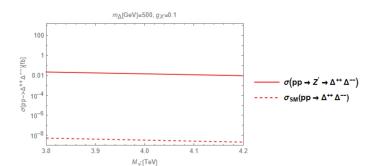
Constraint on Z' boson production from LHC Run-2 Cont'd:-

- ightharpoonup Z' boson branching ratio depends on x_H
- We calculate $\sigma(pp \to Z')B(Z' \to e^{\pm}, \mu^{\pm})$ for various x_H

Constraint on Z' boson production from LHC Run-2 Cont'd:-

We interpret the ATLAS bound to calculate the upper bound of g_X


Figure: (a) g_X vs. $M_{Z'}$,

(b) g_X vs. x_H

Doubly Charged $\Delta^{\pm\pm}$ production at LHC: Comparison between BSM and SM processes:-

- We set $g_x = .1$ and $x_H = 0$ for $M_{Z'}[TeV] = 4$ from LHC constraints.
- ► Cross section calculated for invariant mass in range of $.95M_{Z'} \le E \le 1.05M_{Z'}$ resulting in $\sigma_{(pp\to Z'\to \Delta^{++}\Delta^{--})} \gg \sigma_{SM(pp\to \Delta^{++}\Delta^{--})}$

Summary:

- 1. $U(1)_X$ extended framework proposed to accommodate Type-II Seesaw scalar at LHC.
- 2. We have considered $\Delta^{\pm\pm}$ production from Z' decay .
- 3. Focusing on $\Delta^{\pm\pm}$ pair production around $M_{Z'}$ for the invariant mass, Z' mediated process dominates over SM gauge boson mediated processes.

Future Plan:- Simulation study focusing on the invariant mass range of $m_{Z'}$ - $\delta \mathsf{E} \leq \mathsf{E} \leq m_{Z'} + \delta \mathsf{E}$, to optimize the chance of detecting $\Delta^{\pm\pm}$, while reducing the SM background.