Anomalies, representations and Self-Supervision

Luigi Favaro

Pheno2023
Pittsburgh - 09/05/2023
based on arXiv:2301.04660

- Are we leaving stones unturned? Can we answer this question only via direct searches?
- Anomaly searches: define background from the data and find "anomalous" events

- Are we leaving stones unturned? Can we answer this question only via direct searches?
- Anomaly searches: define background from the data and find "anomalous" events

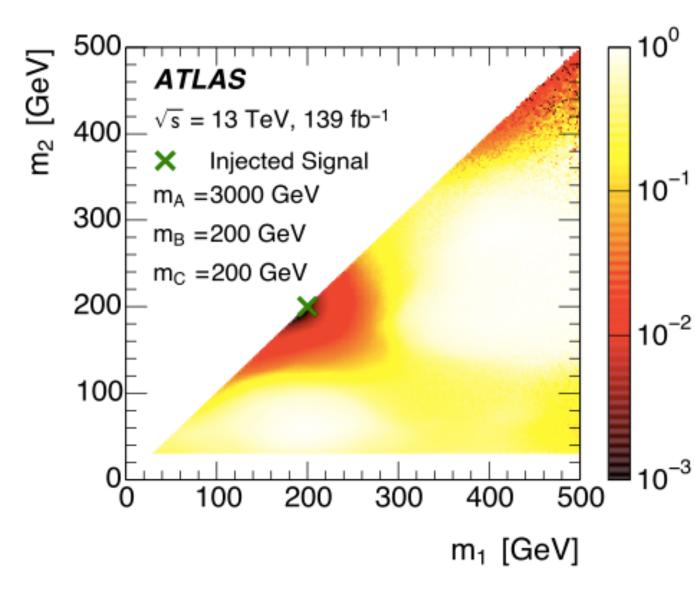
a known problem in Machine Learning (or not?) what we are looking for:

- robust anomaly detection tool
- looking for group anomalies
- level of agnosticism
- perform analysis (bump hunt, ABCD, ...)

- Are we leaving stones unturned? Can we answer this question only via direct searches?
- Anomaly searches: define background from the data and find "anomalous" events

a known problem in Machine Learning (or not?) what we are looking for:

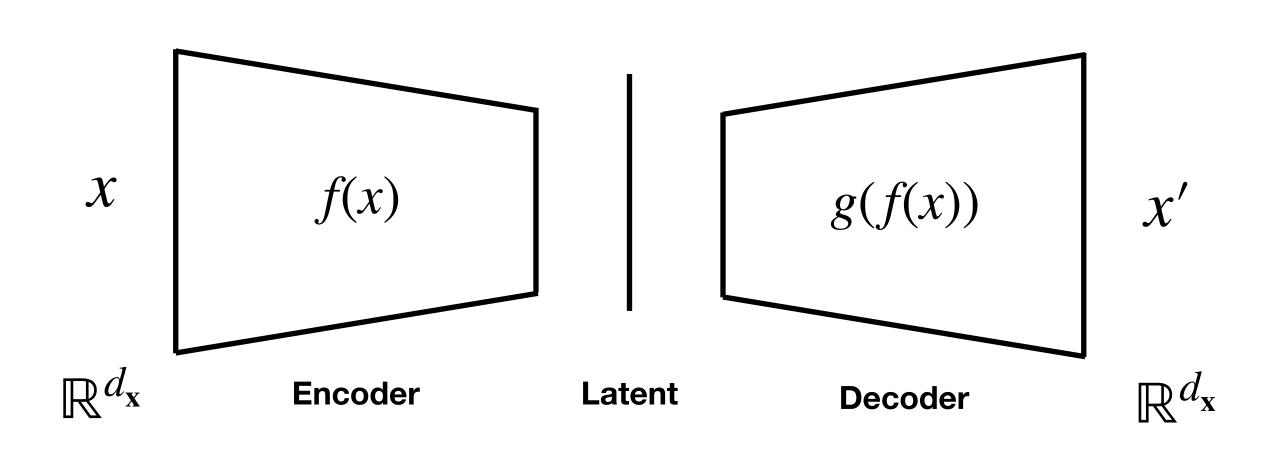
- robust anomaly detection tool
- looking for group anomalies
- level of agnosticism
- perform analysis (bump hunt, ABCD, ...)



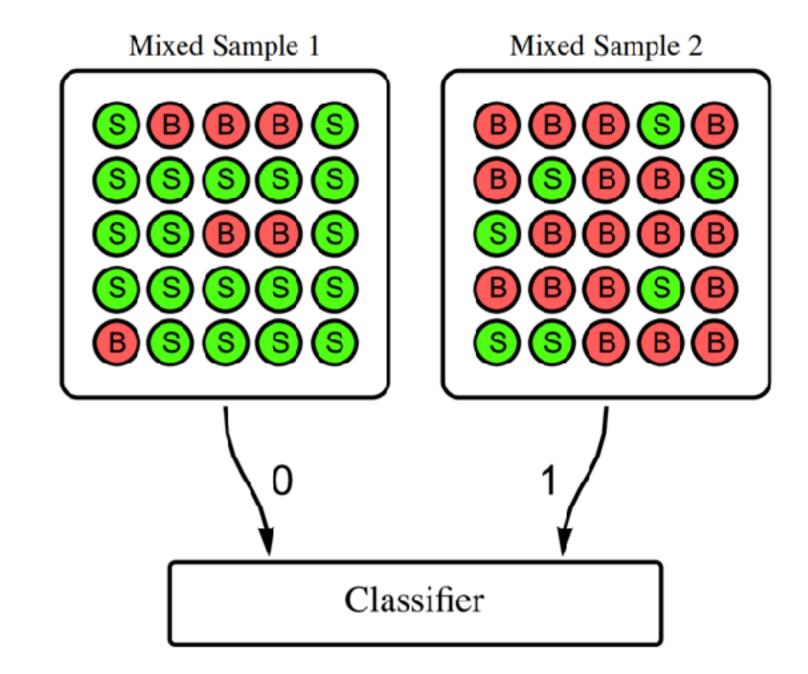
Already many interesting challenges/applications of ML techniques

Two big families:

Autoencoders (AE)



Classification without labels (CWOLA)



How do we define an anomaly?

How do we define an anomaly?

We can define an anomaly as an out of distribution (OOD) object

Anomaly score: $S = \{x \mid l(x) < \tau\}$

Auto-Encoders: use MSE as estimated density

How do we define an anomaly?

We can define an anomaly as an out of distribution (OOD) object

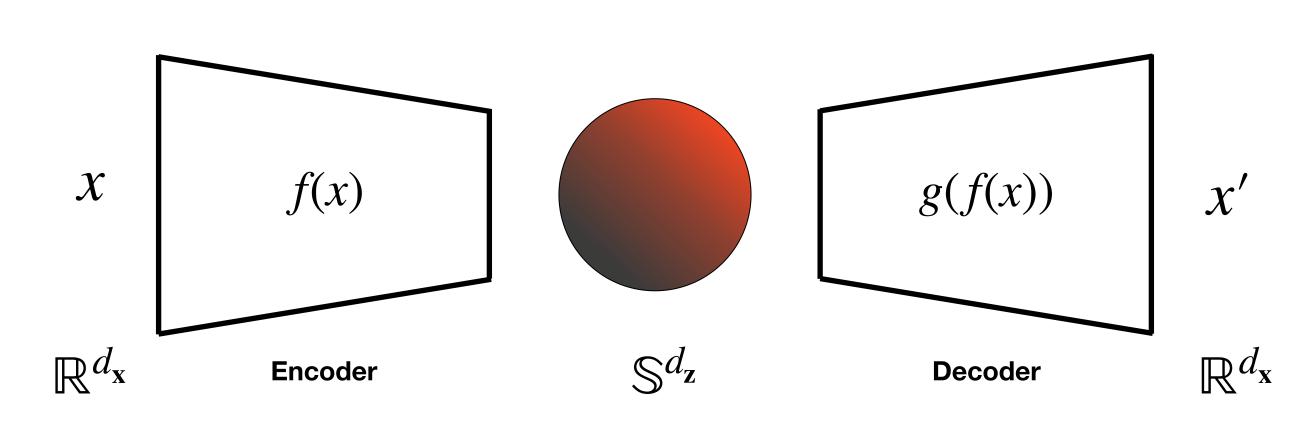
Anomaly score:

$$S = \{x \mid l(x) < \tau\}$$

Auto-Encoders: use MSE as estimated density

 $MSE(x, x') = ||x - x'||_2^2$

not robust OOD estimator see arXiv:2206:14225



How do we define an anomaly?

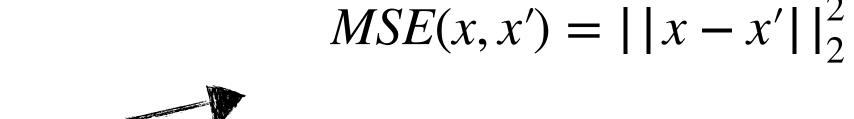
We can define an anomaly as an out of distribution (OOD) object

Anomaly score:

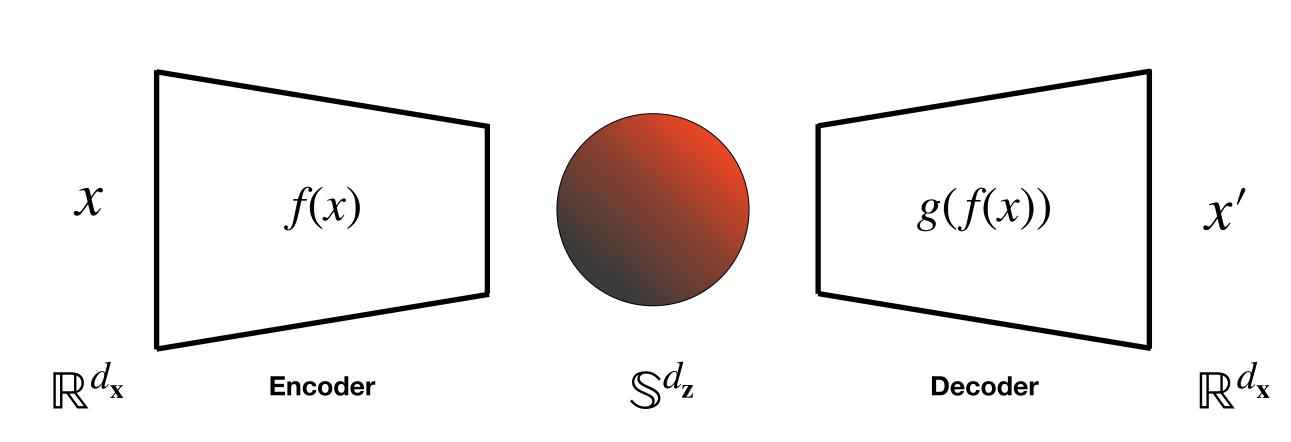
$$S = \{x \mid l(x) < \tau\}$$

Auto-Encoders: use MSE as estimated density

score is not invariant to data preprocessing

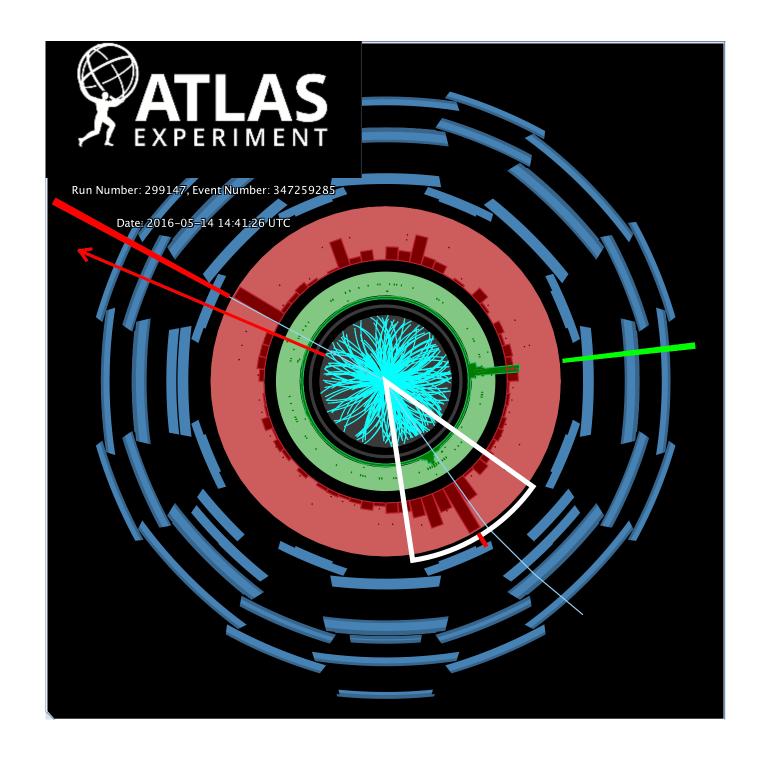


not robust OOD estimator see arXiv:2206:14225



How to choose the best representation?

Example: LHC data has known symmetries —— exploit them for better representations



Reconstructed objects

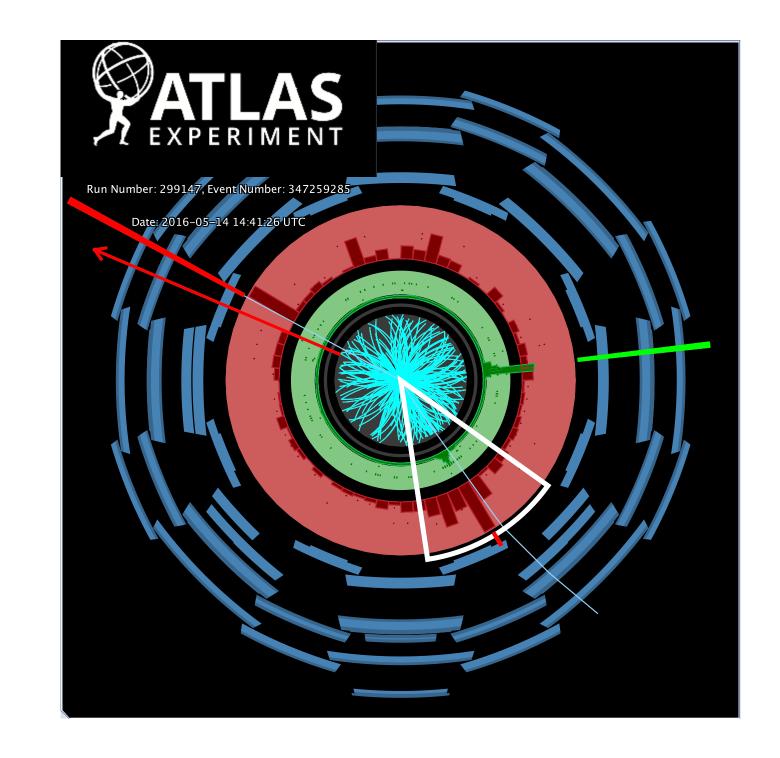
How to choose the best representation?

Example: LHC data has known symmetries —— exploit them for better representations

Issue of auto encoding:

Latent space cannot be invariant to symmetries:

reconstruction of different events would not be possible



Reconstructed objects

How to choose the best representation?

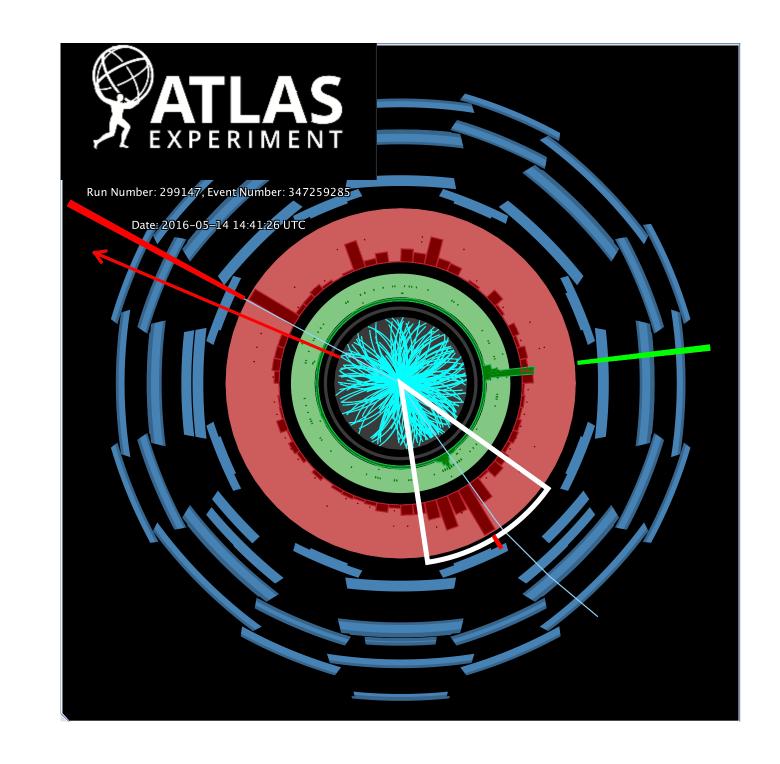
Example: LHC data has known symmetries —— exploit them for better representations

Issue of auto encoding:

Latent space cannot be invariant to symmetries:

reconstruction of different events would not be possible

----- preprocessing is necessary



Reconstructed objects

Application at event-level

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

Application at event-level

Dataset: mixture of SM events

$$W \rightarrow l\nu$$
 (59.2%)
 $Z \rightarrow ll$ (6.7%)
 $t\bar{t}$ production (0.3%)
QCD multijet (33.8 %)

BSM benchmarks

$$A \rightarrow 4l$$

$$LQ \rightarrow b\nu$$

$$h_0 \rightarrow \tau\tau$$

$$h_+ \rightarrow \tau\nu$$

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

Application at event-level

Dataset: mixture of SM events

$$W \rightarrow l\nu$$
 (59.2%)
 $Z \rightarrow ll$ (6.7%)
 $t\bar{t}$ production (0.3%)
QCD multijet (33.8 %)

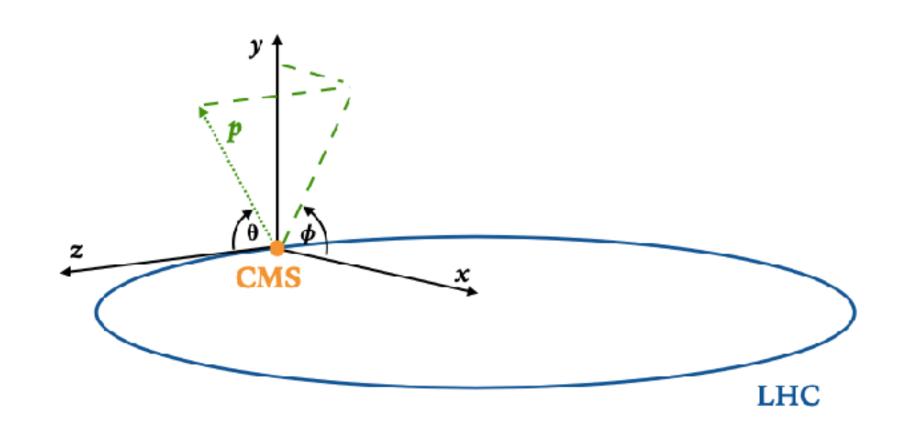
BSM benchmarks

$$A \rightarrow 4l$$

$$LQ \rightarrow b\nu$$

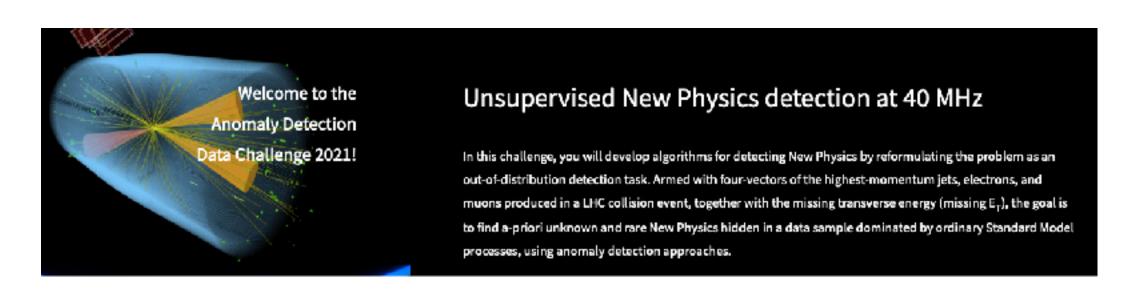
$$h_0 \rightarrow \tau\tau$$

$$h_+ \rightarrow \tau\nu$$



The events are represented in format: (19, 3) entries

- 19 particles: MET, 4 electrons, 4 muons, and 10 jets
- 3 observables: p_T , η , ϕ
- $|\eta| < [3, 2.1, 4]$ for e, μ, j respectively



[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]

- Neural Networks are not invariant to physical symmetries in data
- Typically solved through "pre-processing"

- Neural Networks are not invariant to physical symmetries in data
- Typically solved through "pre-processing"

Our goal: control the training to ensure we learn physical quantities

What the representations should have:

- invariance to certain transformations of the jet/event
- discriminative power

- Neural Networks are not invariant to physical symmetries in data
- Typically solved through "pre-processing"

Our goal: control the training to ensure we learn physical quantities

What the representations should have:

- invariance to certain transformations of the jet/event
- discriminative power
- CLR: map raw data to a new representation/observables
- Self-supervision: during training we use pseudo-labels, not truth labels

Contrastive Learning paradigm:

- positive pairs: $\{(x_i, x_i')\}$ where x_i' is an augmented version of x_i
- negative pairs: $\{(x_i, x_j) \cup (x_i, x_i')\}$ for $i \neq j$

Contrastive Learning paradigm:

- positive pairs: $\{(x_i, x_i')\}$ where x_i' is an augmented version of x_i
- negative pairs: $\{(x_i, x_j) \cup (x_i, x_i')\}$ for $i \neq j$

Augmentation: any transformation (e.g. rotation) of the original jet

Contrastive Learning paradigm:

- positive pairs: $\{(x_i, x_i')\}$ where x_i' is an augmented version of x_i
- negative pairs: $\{(x_i, x_j) \cup (x_i, x_j')\}$ for $i \neq j$

Augmentation: any transformation (e.g. rotation) of the original jet

Train a Transformer-encoder network to map the data to a compact latent space, $f: \mathcal{F} \to \mathcal{R}$

Contrastive Learning paradigm:

- positive pairs: $\{(x_i, x_i')\}$ where x_i' is an augmented version of x_i
- negative pairs: $\{(x_i, x_j) \cup (x_i, x_i')\}$ for $i \neq j$

Augmentation: any transformation (e.g. rotation) of the original jet

Train a Transformer-encoder network to map the data to a compact latent space, $f: \mathcal{F} \to \mathcal{R}$

Loss function:

$$\mathcal{L} = -\log \frac{exp(s(z_i, z_i')/\tau)}{\sum_{x \in batch} \mathbb{I}_{i \neq j}[exp(s(z_i, z_j)/\tau) + exp(s(z_i, z_j')/\tau)]}$$

$$\mathcal{L} = -\log \frac{exp(s(z_i, z_i')/\tau)}{\sum_{x \in batch} \mathbb{I}_{i \neq j}[exp(s(z_i, z_j)/\tau) + exp(s(z_i, z_j')/\tau)]}$$

Similarity measure:

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|}, \qquad z_i = f(x_i)$$

$$\mathcal{L} = -\log \frac{exp(s(z_i, z_i')/\tau)}{\sum_{x \in batch} \mathbb{I}_{i \neq j}[exp(s(z_i, z_j)/\tau) + exp(s(z_i, z_j')/\tau)]}$$

alignment

Similarity measure:

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|}, \qquad z_i = f(x_i)$$

$$\mathcal{L} = -\log \frac{exp(s(z_i, z_i')/\tau)}{\sum_{x \in batch} \mathbb{I}_{i \neq j}[exp(s(z_i, z_j)/\tau) + exp(s(z_i, z_j')/\tau)]}$$

alignment

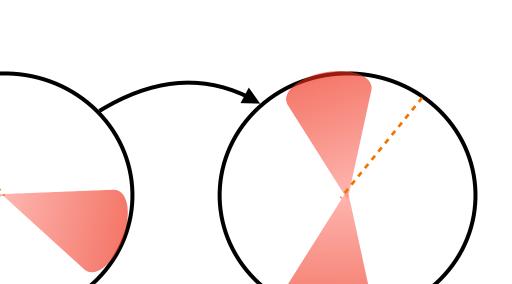
uniformity

Similarity measure:

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_j|}, \qquad z_i = f(x_i)$$

Physical augmentations:

- azimuthal rotations
- η, ϕ smearing
- energy smearing



$$p_T \sim \mathcal{N}(p_T, f(p_T)), \qquad f(p_T) = \sqrt{0.052p_T^2 + 1.502p_T^2}$$

$$\eta' \sim \mathcal{N}\left(\eta, \sigma(p_T)\right)$$

$$\phi' \sim \mathcal{N}\left(\phi, \sigma(p_T)\right)$$

$$\phi' \sim \mathcal{N}\Big(\phi, \sigma(p_T)\Big)$$

Self-supervision for anomaly detection

Can we train a transformer-encoder only on background data?

Possible, with no guarantee to learn representations sensitive to new physics

Introduce z^* , anomaly-augmented point

Self-supervision for anomaly detection

Can we train a transformer-encoder only on background data?

Possible, with no guarantee to learn representations sensitive to new physics

Introduce z^* , anomaly-augmented point

Loss function:

$$\mathcal{L}_{AnomCLR} = -\log \frac{exp(s(z_i, z_i') - s(z_i, z_i^*)/\tau)}{\sum_{x \in batch} \mathbb{I}_{i \neq j} [exp(s(z_i, z_j)/\tau) + exp(s(z_i, z_j')/\tau)]}$$

$$\mathcal{L}_{AnomCLR+} = -\log e^{(s(z_i, z_i') - s(z_i, z_i^*))/\tau} = \frac{s(z_i, z_i^*) - s(z_i, z_i)}{\tau}$$

Enhancing discriminative features

Enhancing discriminative features

Representations may not be sensitive to BSM features:

- physical augmentations: alignment between positive pairs
- anomalous augmentations: discriminative power of possible BSM features

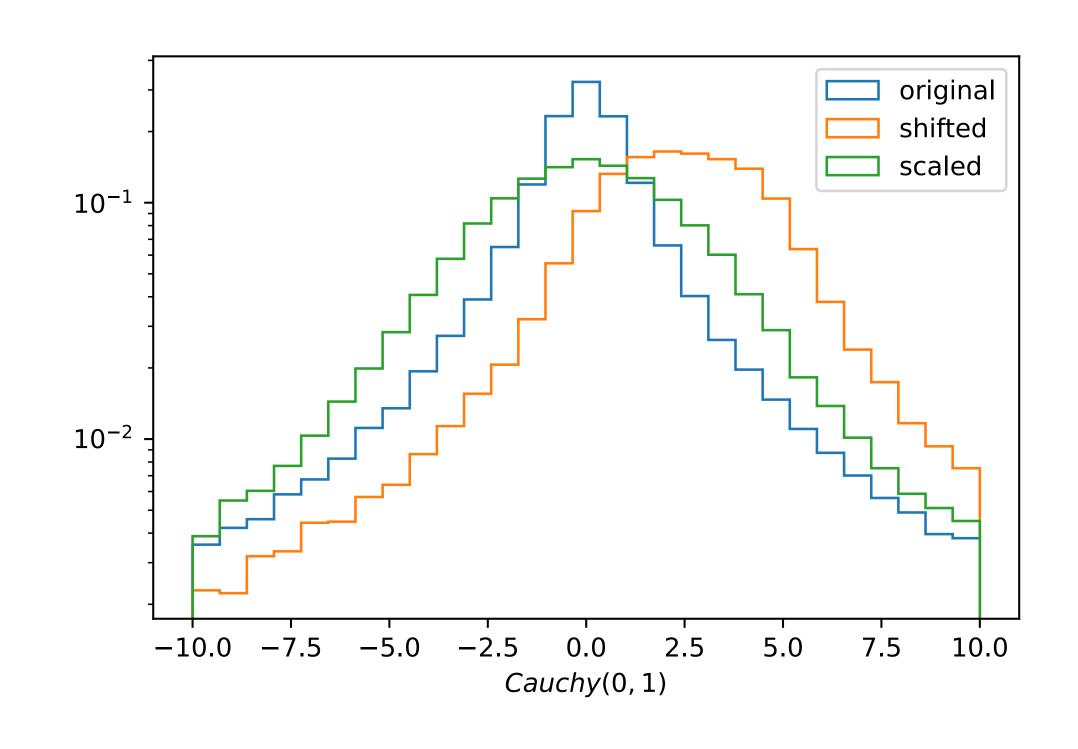
Enhancing discriminative features

Representations may not be sensitive to BSM features:

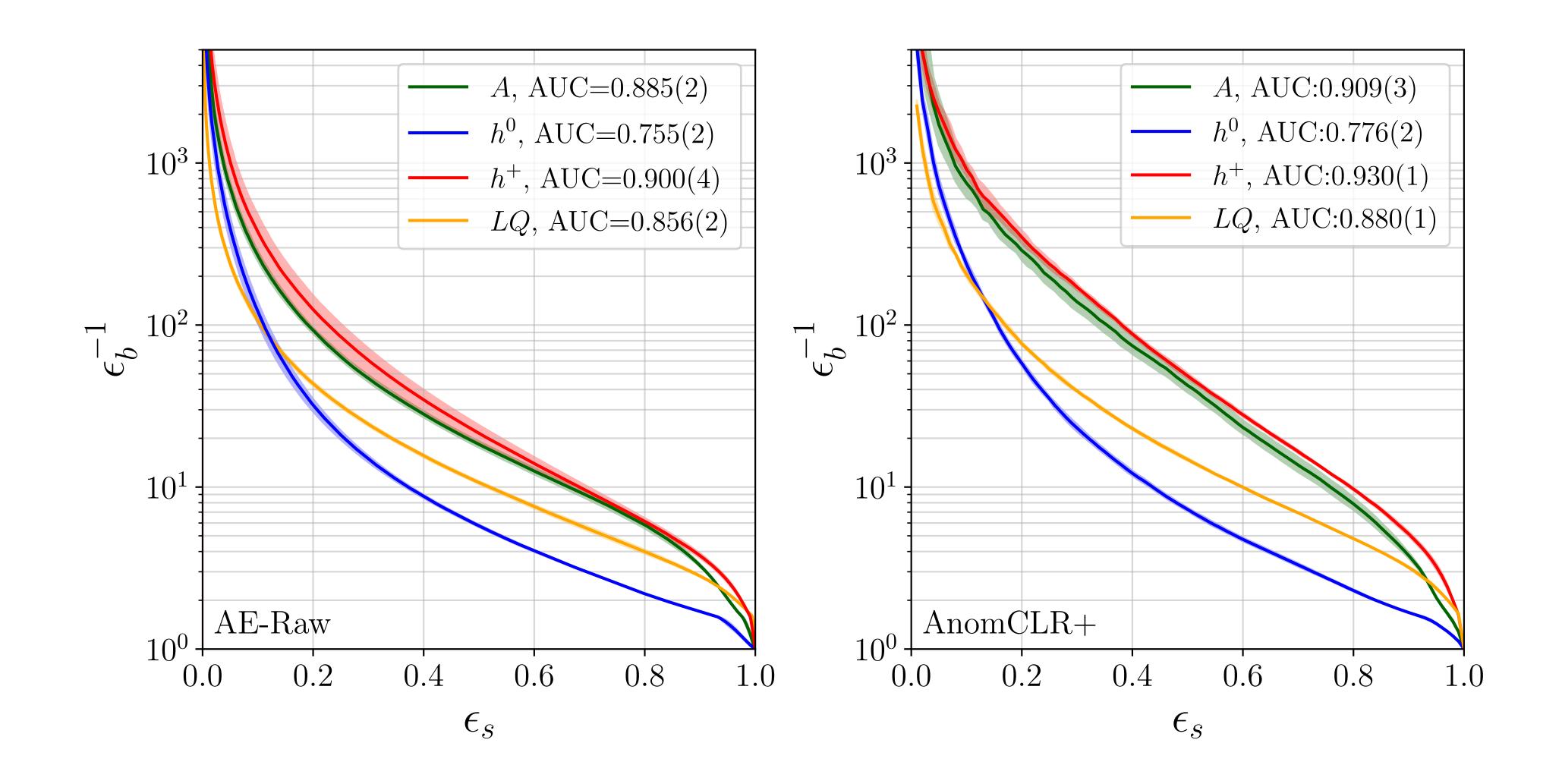
- physical augmentations: alignment between positive pairs
- anomalous augmentations: discriminative power of possible BSM features

Anomalous augmentations:

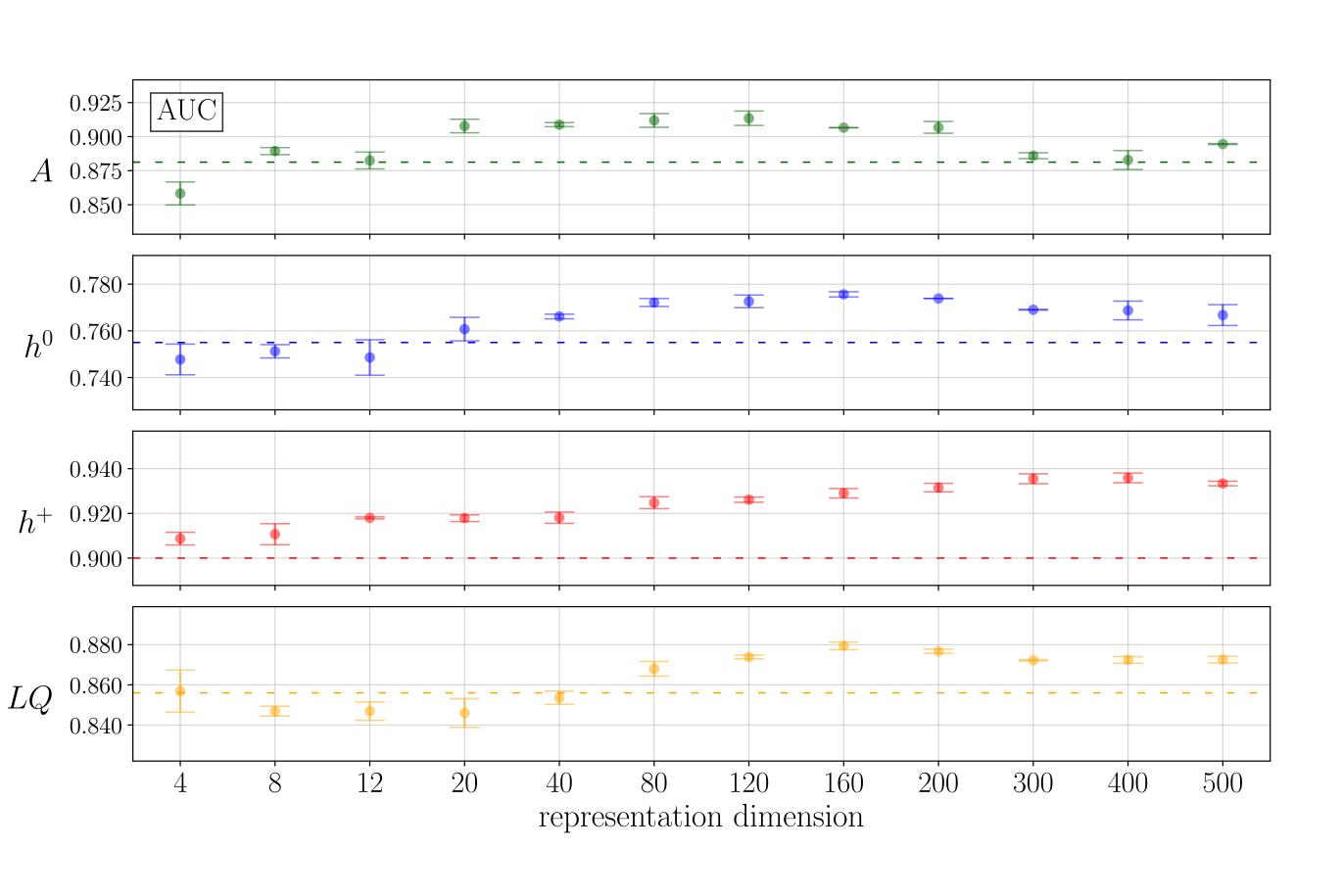
- multiplicity shifts:
 - add a random number of particles, update MET
 - split existing particles, keeping total p_T and MET fixed
- p_T and MET shifts

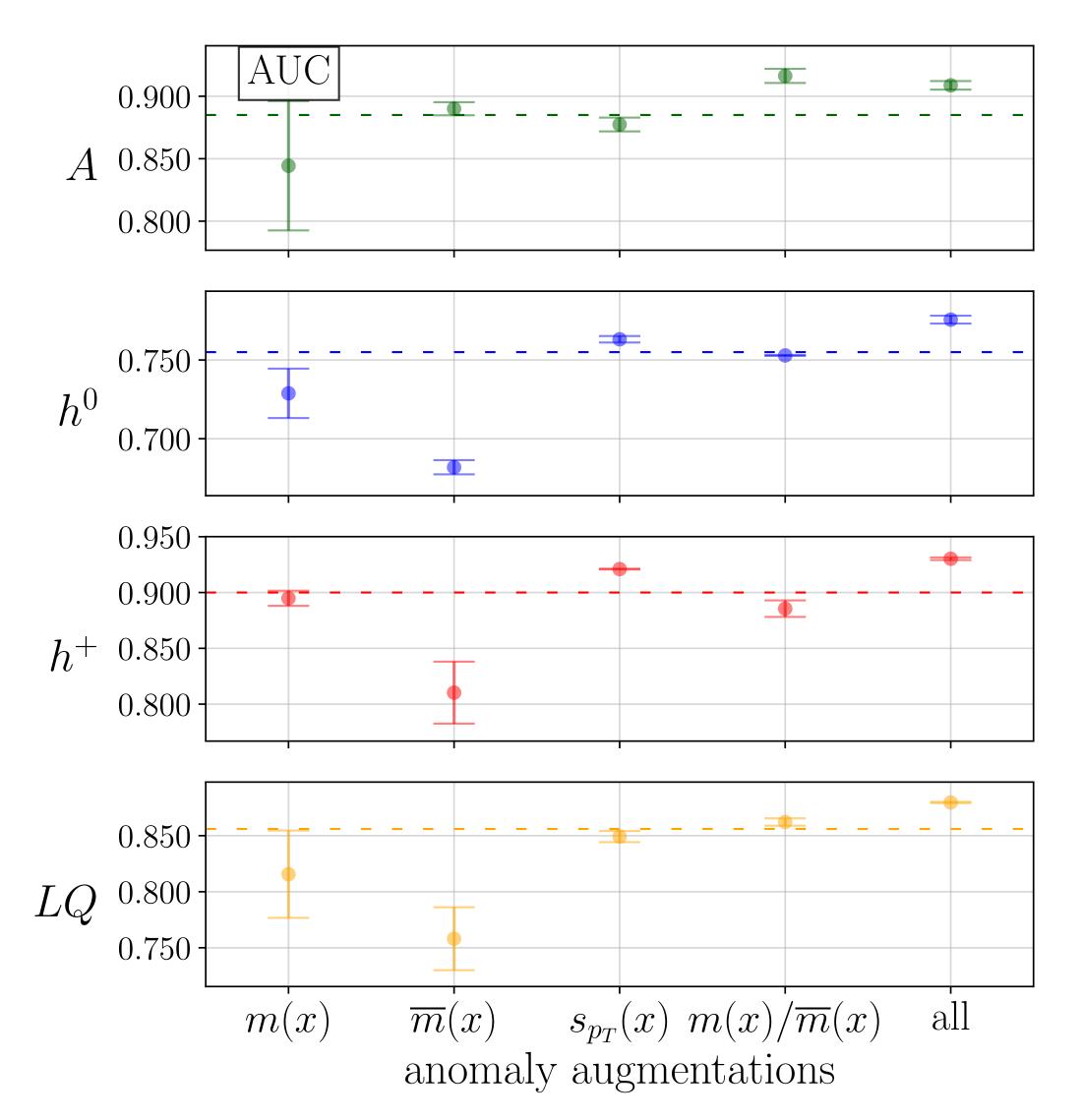


Results: improved sensitivity



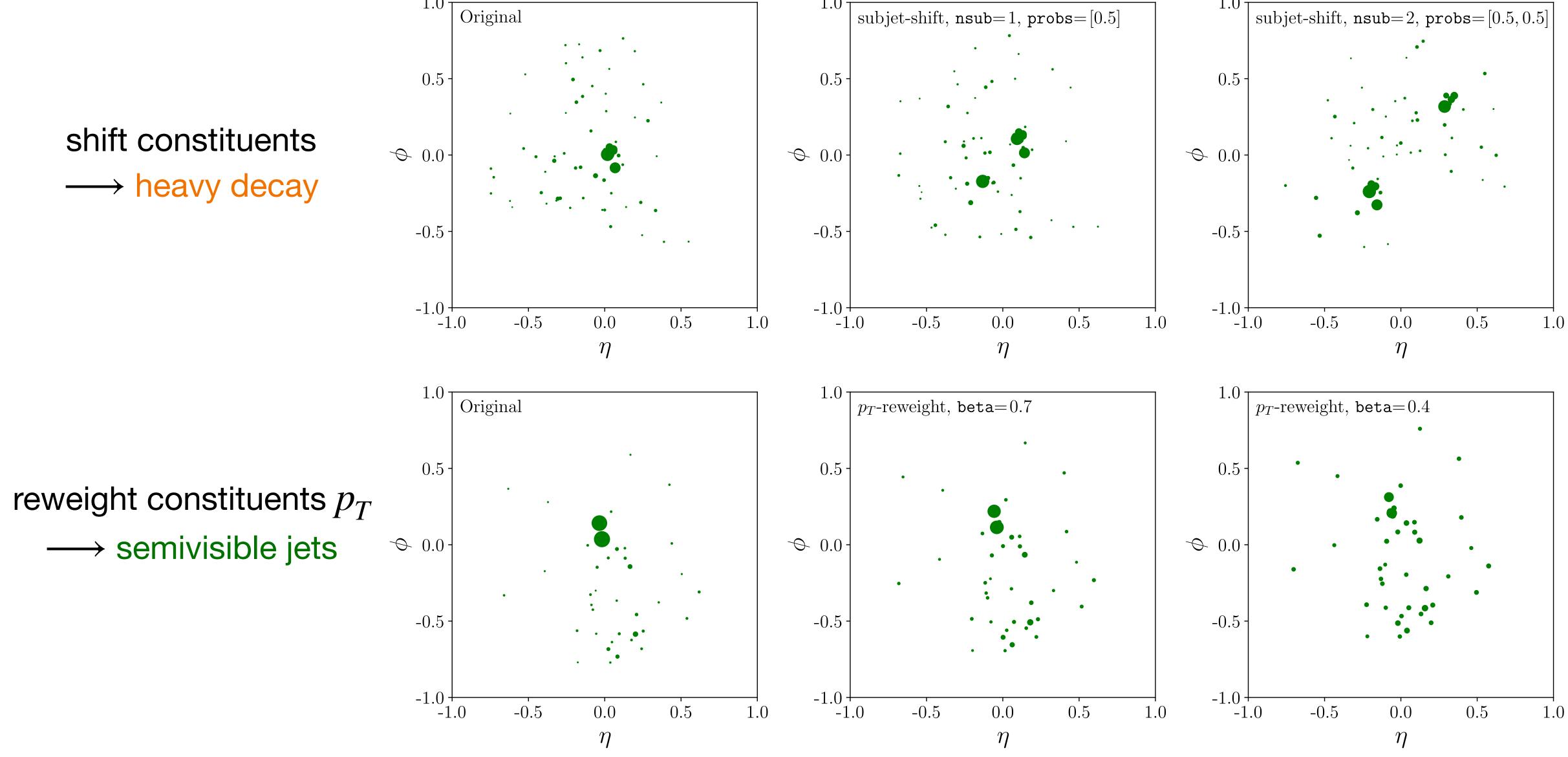
Effect of anomalous augmentations





AnomalyCLR on Jets

preliminary



Luigi Favaro - ITP Universität Heidelberg - Anomalies, representations and Self-Supervision

Pittsburgh - 09/05/2023

Conclusions/Outlook

Unsupervised Machine Learning for NP searches can be a powerful tool for LHC physics

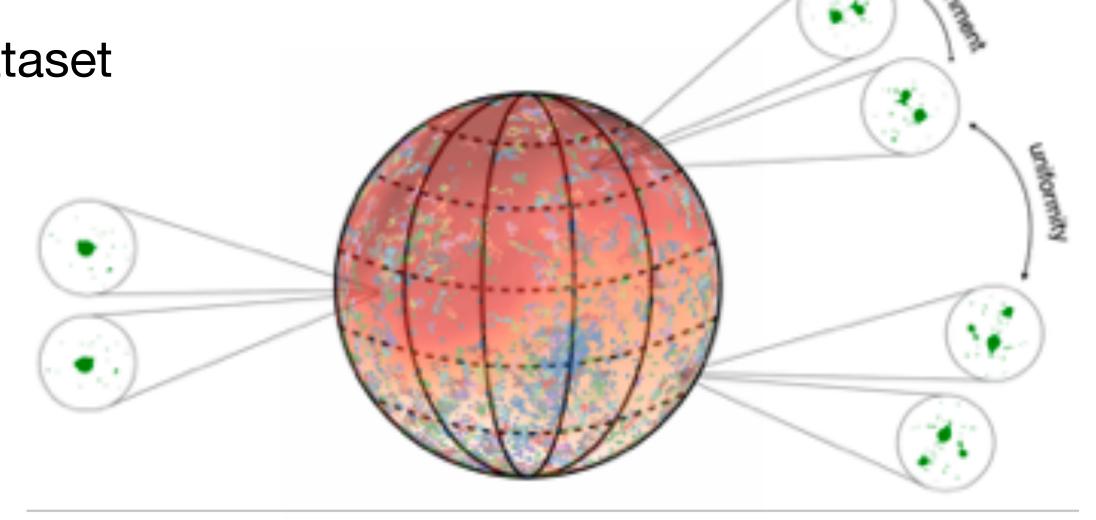
Self-supervision and CLR are a powerful tools to build representations for downstream tasks

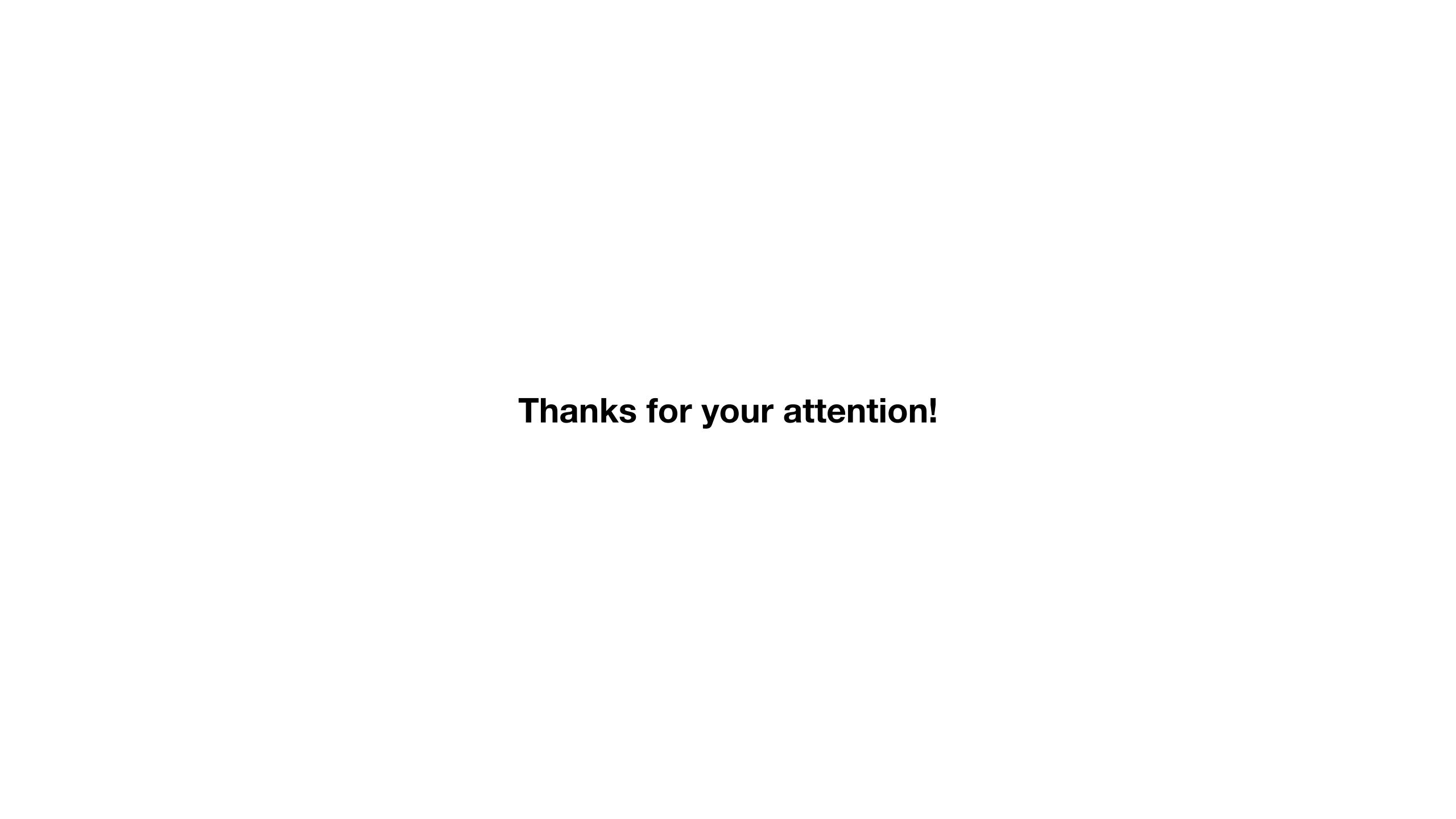
AnomalyCLR — learn invariances, and representations with high discriminative power

Enhanced tagging performance tested on the ADC2021 dataset

Future work:

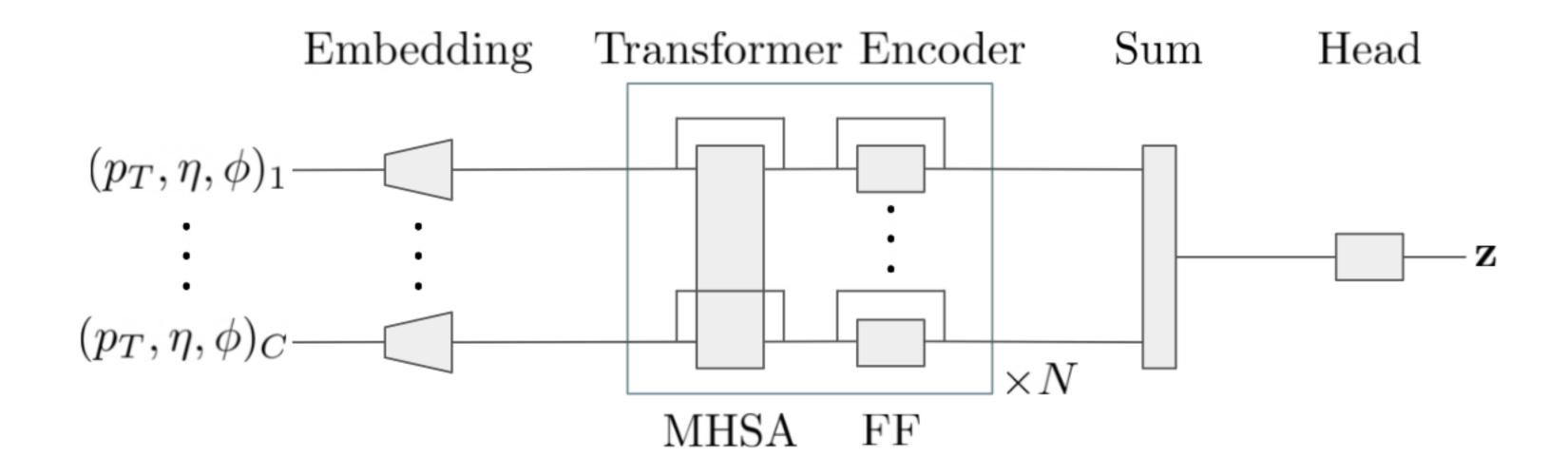
Self-supervision for anomalous jet-tagging





Backup

Transformer Network



$$A(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_k}})V$$

 $Multihead = Concat(head_{1...N})W^{O}$

Results: SIC CURVES

