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Model-agnostic searches & ML
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Model-agnostic searches & ML

* Are we leaving stones unturned? Can we answer this question only via direct searches?

* Anomaly searches: define background from the data and find “anomalous” events
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Model-agnostic searches & ML

* Are we leaving stones unturned? Can we answer this question only via direct searches?

* Anomaly searches: define background from the data and find “anomalous” events

a known problem in Machine Learning (or not?)
what we are looking for:

* robust anomaly detection tool
* looking for group anomalies
* level of agnosticism

» perform analysis (bump hunt, ABCD, ...)
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Model-agnostic searches & ML

* Are we leaving stones unturned? Can we answer this question only via direct searches?

* Anomaly searches: define background from the data and find “anomalous” events

a known problem in Machine Learning (or not?)
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Already many interesting challenges/applications of ML techniques
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Model-agnostic searches & ML

Two big families:

Autoencoders (AE) Classification without labels (CWOLA)

Mixed Sample 1 Mixed Sample 2
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Autoencoders for HEP: questions

How do we define an anomaly?
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Autoencoders for HEP: questions

How do we define an anomaly?

We can define an anomaly as an out of distribution (OOD) object

Anomaly score: §={x|lx) <7}

Auto-Encoders: use MSE as estimated density
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Autoencoders for HEP: questions

How do we define an anomaly?

We can define an anomaly as an out of distribution (OOD) object
MSE(x,x') = | |x = x'| |

not robust OOD estimator

Anomaly score: §={x]lx) <} see arXiv:2206:14225

Auto-Encoders: use MSE as estimated density

Rdx Encoder Sdz Decoder Rdx
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Autoencoders for HEP: questions

How do we define an anomaly?

We can define an anomaly as an out of distribution (OOD) object
MSE(x,x') = | |x = x'| |

not robust OOD estimator

Anomaly score: §={x]lx) <} see arXiv:2206:14225

Auto-Encoders: use MSE as estimated density

score is not invariant to data preprocessing
Rdx Encoder Sdz Decoder Rdx
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Autoencoders for HEP: questions

How to choose the best representation?

Example: LHC data has known symmetries — exploit them for better representations

ATLAS

EXPERIMENT

Reconstructed objects
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Autoencoders for HEP: questions

How to choose the best representation?

Example: LHC data has known symmetries — exploit them for better representations

ATLAS

EXPERIMENT

Issue of auto encoding:
Latent space cannot be invariant to symmetries:

reconstruction of different events would not be possible

Reconstructed objects
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Autoencoders for HEP: questions

How to choose the best representation?

Example: LHC data has known symmetries — exploit them for better representations

ATLAS

EXPERIMENT

Issue of auto encoding:
Latent space cannot be invariant to symmetries:

reconstruction of different events would not be possible

—> preprocessing IS hecessary

Reconstructed objects
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Application at event-level

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]
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Application at event-level

Dataset: mixture of SM events BSM benchmarks
W Ilv (59.2%) A — 4l
7Z -1l (6.7%) LQ — bv
tt production (0.3%) hy — 17
QCD multijet (33.8 %) h, = 1w

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]
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Application at event-level

Dataset: mixture of SM events BSM benchmarks

W= Ilv (59.2%) A — 4]

7> 1l (6.7%) LQ — bv ]

tt production (0.3%) hy — 7
QCD multijet (33.8 %) h, = 1w

The events are represented in format: (19, 3) entries
* 19 particles: MET, 4 electrons, 4 muons, and 10 jets

» 3 observables: p, 11, ¢ .
|| <[3, 2.1, 4] fore, u, jrespectively N el

“Datachallenge 2021!

[Anomalies, representations, and self-supervision, Dillon B. et al. arXiv:2301.04660]
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LHC

Unsupervised New Physics detection at 40 MHz

In this challenge, you will devalop algenthms for detecting New Physics by reformulating the problem asan
out-aof-distribution detection task. Armed with faur-vectars of the highest-mamentum jets, electrans, and
muons preduced in 2 LHC collision event, together with the missing transverse energy (missing £, ), the goal is
to find a-priari unknawn and rare New Physics hidden in a data sample daminated by ardinary Standard Model

procasses, using anemaly detection appreaches.
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Self-supervision
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Self-supervision

* Neural Networks are not invariant to physical symmetries in data

* Typically solved through “pre-processing”
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Self-supervision

* Neural Networks are not invariant to physical symmetries in data

* Typically solved through “pre-processing”

Our goal: control the training to ensure we learn physical quantities

What the representations should have:

- invariance to certain transformations of the jet/event

- discriminative power
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Self-supervision

* Neural Networks are not invariant to physical symmetries in data

* Typically solved through “pre-processing”

Our goal: control the training to ensure we learn physical quantities

What the representations should have:

- invariance to certain transformations of the jet/event

- discriminative power

 CLR: map raw data to a new representation/observables

» Self-supervision: during training we use -labels, not truth labels
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Contrastive Learning framework

Luigi Favaro - ITP Universitat Heidelberg - Anomalies, representations and Self-Supervision Pittsburgh - 09/05/2023



Contrastive Learning framework

Contrastive Learning paradigm:

By " . / / " "
e positive pairs: {(x;, X))} where x; is an augmented version of x;

» negative pairs: {(x;,x;) U (x;,x7)} fori # j
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Contrastive Learning framework

Contrastive Learning paradigm:

By " . / / " "
e positive pairs: {(x;, X))} where x; is an augmented version of x;

» negative pairs: {(x;,x;) U (x;,x7)} fori # j

Augmentation: any transformation (e.g. rotation) of the original jet

Luigi Favaro - ITP Universitat Heidelberg - Anomalies, representations and Self-Supervision Pittsburgh - 09/05/2023



Contrastive Learning framework

Contrastive Learning paradigm:

By " . / / " "
e positive pairs: {(x;, X))} where x; is an augmented version of x;

- negative pairs: {(x;, x;) U (x;, x]f)} fori #
Augmentation: any transformation (e.g. rotation) of the original jet

Train a Transformer-encoder network to map the data to a compact latent space, f: ./ — &£
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Contrastive Learning framework

Contrastive Learning paradigm:

By " . / / " "
e positive pairs: {(x;, X))} where x; is an augmented version of x;

- negative pairs: {(x;, x;) U (x;, x]f)} fori #
Augmentation: any transformation (e.g. rotation) of the original jet

Train a Transformer-encoder network to map the data to a compact latent space, f: ./ — &£

Loss function: eXp(S(Zi, Zi,)/T)

< = —log
erbatch Ii#j[exp(s(zi’ Zj)/T) T €XP(S(ZZ°, Z],)/T)]
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Defining augmentations
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Defining augmentations

exp(s(z, Z)/7)

Z = —log
erbatch Lizilexp(s(z;, z))/7) + exp(s(z;, z)/ 7))

Similarity measure:
< * Zj

z; = f(x;)

S(Z,Z) — ’
o | Z; | ‘Zj‘
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Defining augmentations

alignment
exp(s(z;, 2)/7)

Z = —log
erbatch Lizilexp(s(z;, z))/7) + exp(s(z;, z)/ 7))

uniformity
Similarity measure:

Zi‘Zj

z; = f(x;)

S(Z,Z) — ’
o | Z; | ‘Zj‘
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Defining augmentations

alignment
exp(s(z;, zi)/7)
erbatch Ii#j[exp(s(zi’ Zj)/T) + EXP(S(ZZ-, Z],)/T)]

< = —log

uniformity
Similarity measure:

< * Zj
$(z;» 2) = , = fx)
| Z; | ‘Zj‘
| | pr~ N (prf(pp),  flpr) = \/ 0.052p7 + 1.502p;
Physical augmentations:
 azimuthal rotations
. 1, ¢ smearing n' ~ /V(r], a(pT)>

* energy smearing

¢’ ~ /V(gb, U(PT)>
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Self-supervision for anomaly detection

Can we train a transformer-encoder only on background data®?

Possible, with no guarantee to learn representations sensitive to new physics

_Introduce z*, anomaly-augmented point i
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Self-supervision for anomaly detection

Can we train a transformer-encoder only on background data®?

Possible, with no guarantee to learn representations sensitive to new physics

e ———— e
p——— s R =

e

.

> _—

=

_Introduce z*, anomaly-augmented point

Y
S———

—_—
_— ) 7
_ e _____ - o - I

Loss function:
exp (S (Zia Zi,) — 35 (Zia Zi*)/ T)
Iislexp(s(z, 2)/7) + exp(s(z; 2)/7)]

gAHOWLCLR — = lOg z

xEbatch

T

Luigi Favaro - ITP Universitat Heidelberg - Anomalies, representations and Self-Supervision Pittsburgh - 09/05/2023



Enhancing discriminative features
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Enhancing discriminative features

Representations may not be sensitive to BSM features:
* physical augmentations: alignment between positive pairs

* anomalous augmentations: discriminative power of possible BSM features
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Enhancing discriminative features

Representations may not be sensitive to BSM features:
* physical augmentations: alignment between positive pairs

* anomalous augmentations: discriminative power of possible BSM features

[ 1 original
Anomalous augmentations: s e
« multiplicity shifts: o
- add a random number of particles, update MET
- split existing particles, keeping total p and MET fixed 10~ - .
» prand MET shifts | = —

-10.0 -75 =50 =25 0.0 2.5 5.0 7.5 10.0
Cauchy(0, 1)
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Results: improved sensitivity

—— A, AUC=0.885(2) —— A, AUC:0.909(3)
3 —— R, AUC=0.755(2) 3' —— RO, AUC:0.776(2)
107 —— B, AUC=0.900(4) R B\ R —— A, AUC:0.930(1)
LQ, AUC=0.856(2) : LQ, AUC:0.880(1)
—~ 107 —~ 107
| < | <
L L
101 - 101 -
| AnomCLR+
10V - - - - 10V . - . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
€o €s
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LQ

Effect of anomalous augmentations
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AnomalyCLR on Jets

shift constituents
—> heavy decay

reweight constituents p
—> semivisible jets
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Conclusions/Outlook

Unsupervised Machine Learning for NP searches can be a powerful tool for LHC physics
—> Auto-Encoders (AE) are simple and effective neural networks for AD

Self-supervision and CLR are a powerful tools to build representations for downstream tasks

AnomalyCLR — learn invariances, and representations with high discriminative power

Enhanced tagging performance tested on the ADC2021 dataset

Future work: .

Self-supervision for anomalous jet-tagging
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Thanks for your attention!
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Transformer Network

Embedding Transformer Encoder Sum Head

(pT7 1], ¢) 1 G’
: : -,
(prsm, ¢)c—|
— X N
MHSA FF
OK" | 5
A(Q, K, V) = softmax( )WV Multihead = Concat(head; )W

iy
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Results: SIC CURVES
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