

BERKELEY LAB

Measurements of Higgs boson production and decay rates and their interpretation with the ATLAS experiment

Shuo Han
On behalf of ATLAS collaboration
Pheno 2023, May 9th 2023

Introduction

- The measurement of Higgs properties, including its production and decay rates, is one of the most important tasks after Higgs discovery
- ATLAS recorded 139 fb⁻¹ of good pp collision data at 13 TeV with LHC Run 2
- This talk mainly summarizes the latest publications of Higgs boson production and decay rates with ATLAS Run2 dataset

Outline

- Total and differential cross-sections:
 - Higgs to $\gamma\gamma$, Higgs to ZZ*: <u>CERN-EP-2022-143</u> ($\gamma\gamma + ZZ$), <u>ATLAS-CONF-2023-003</u> ($\gamma\gamma Run 3$)
 - Higgs to WW*: <u>CERN-EP-2022-228</u> (ggF), <u>CERN-EP-2023-025</u> (VBF), <u>ATLAS-CONF-2022-067</u> (VH)
- Higgs rare decay searches
 - Higgs to invisible searches: <u>CERN-EP-2022-289</u>
 - (Higgs to γγ) + X model-independent searches: <u>CERN-EP-2022-232</u>
- Combination and interpretation results
 - Higgs coupling strengths (κ modifiers): Nature 607 (2022) 52-59
 - SM effective field theory (SMEFT): <u>ATL-PHYS-PUB-2022-037</u>
- Note:
 - This talk focus on the publications < 1 year, so it doesn't cover various of simplified template cross-section publications, and ongoing studies

Higgs to $\gamma\gamma$, Higgs to **ZZ***

- The most sensitive channels to measure Higgs production and decay rates
 - \circ γγ channel: selects **two isolated photons**. An unbinned simultaneous S+B fit is performed on **m**(γγ). Backgrounds: non-resonant γγ, γ-jet, dijet, Vγγ, ttγγ
 - ZZ channel: selecting 4 leptons, with a leading lepton pair in the Z mass window. A binned S+B fit is performed on the m(4l). Background: non-resonant ZZ*, ttbar, Z+jets
- Single channel full Run2 results (<u>JHEP 08 (2022) 027</u>, <u>EPJC 80 (2020) 941</u>) are combined as a new JHEP paper (<u>CERN-EP-2022-143</u>)

The total cross-section in the combined measurement (55.5 + 4 - 3.8 pb) is compatible with the SM $(55.6 \pm 2.5 \text{ pb})$

Compatibility between 2 channels: 49% Compatibility between obs. and SM: 98%

yy + ZZ* : differential cross-section

- Model-independent measurement of Higgs production cross-section in various differential regions
 - Variables: kinematic of Higgs boson, number of jets, leading jet pT
- Results are compatible with SM, compatibility 20-80%, most bins are driven by stat. uncertainties

Higgs to $\gamma\gamma$, Run3

- The Higgs total cross-section with γγ is also measured with 2022 Run3 data (lumi = 31.4 /fb)
 - ATLAS-CONF-2023-003
 - The center-of-mass energy of Run3 is 13.6 TeV.
- The result is compatible with SM, many uncertainties conservatively extrapolated from Run-2 values. More precious calibration studies are ongoing.

The total cross-section with Run3 data and Higgs to $\gamma\gamma$ (67 + 12 - 11 pb) is compatible with the SM (59.8 ± 2.6 pb)

Higgs to WW* (evµv for VBF/ggF)

- Selecting events with 2 different-flavour, opposite-sign leptons and missing transverse energy (MET).
 ggF events: 0, 1 jets; VBF events: 2 forward jets with large invariant mass.
- Main background: SM WW*, ttbar/tW, $Z\tau\tau$ + jets, W+jets, VV. A binned S+B fit is performed on **mT** for ggF, and on **BDT scores** for VBF.
- Differential cross-sections (<u>CERN-EP-2022-228</u>, <u>CERN-EP-2023-025</u>) and compatible with SM.

Higgs to WW* (|v|v + |v|j) for VH)

- VH: |v|v + |v|j, consider for signatures targeting different decay modes of the W and V boson. performing S+B fits on discriminant variables (based on ANN, RNN, BDT scores)
- WH and ZH cross-sections are measured and combined using the four channels, the results are compatible with SM (<u>ATLAS-CONF-2022-067</u>)

Channel	Background	Normalisation factor
	Тор	$0.99^{+0.31}_{-0.22}$
Opposite-sign 2ℓ $\rightarrow V(qq)WW(\nu \nu)$	Z+jets	$0.87^{+0.15}_{-0.14}$
	WW	$0.89^{+0.27}_{-0.24}$
Same-sign 2ℓ	$W(Z/\gamma^*)$	$0.91^{+0.18}_{-0.16}$
$\rightarrow W(lv)WW(lvqq)$ 3ℓ $\rightarrow W(lv)WW(lvlv)$	$W(Z/\gamma^*)$ 0-jet	1.03 ± 0.06
	$W(Z/\gamma^*) \ge 1$ -jets	$0.88^{+0.16}_{-0.15}$
	WWW	$2.18^{+0.73}_{-0.61}$
4ℓ	ZZ	$0.99^{+0.08}_{-0.07}$
$\rightarrow \angle () \forall \forall \forall \forall (v v)$		

Higgs → invisible searches

- Higgs to invisible searches were combined in various high MET channels. (<u>CERN-EP-2022-289</u>)
- No excess is observed, the limits are set on the H \rightarrow inv branching ratio. The 95% CL upper limit on Br(H \rightarrow inv), combining the Run1 and Run2 results is Br(H \rightarrow inv) = 0.107.

Limits are also set on dark-matter nucleon scattering cross-section in Higgs portal models

Higgs→γγ, model-independent searches

- Model-independent searches are performed with 22 regions targeting (Higgs $\rightarrow \gamma\gamma$) + X
- No excess beyond the SM expectation (largest deviation 1.9 standard deviation), results are reported as limits on the visible cross-sections of Higgs+X, but efficiency ranges (for several benchmark BSM models) are also quoted for reinterpretation in terms of constraints on particle-level cross-sections and
 BSM models (CERN ER 2022, 232)

BSM models (CERN-EP-2022-232)

Target	Region	Detector level	Particle level
Heavy	≥3 <i>b</i>	$n_{b\text{-iet}} \ge 3,85\% \text{ WP}$	$n_{b\text{-iet}} \ge 3$
flavour	≥4 <i>b</i>	$n_{b-\text{jet}}^{b-\text{jet}} \ge 4,85\% \text{ WP}$	$n_{b\text{-jet}} \ge 4$
	≥4j	$n_{\rm jet} \geq 4$, $ \eta_{\rm jet} < 2.5$	$n_{\rm jet} \ge 4, \eta_{\rm jet} < 2.5$
	≥6j	$n_{\rm jet} \ge 6, \eta_{\rm jet} < 2.5$	$n_{\rm jet} \ge 6, \eta_{\rm jet} < 2.5$
High jet	≥8j	$n_{\rm jet} \geq 8, \eta_{\rm jet} < 2.5$	$n_{\rm jet} \ge 8, \eta_{\rm jet} < 2.5$
activity	$H_{\rm T} > 500 {\rm \ GeV}$	$H_{\rm T} > 500~{\rm GeV}$	$H_{\rm T} > 500 {\rm GeV}$
	$H_{\rm T} > 1000 {\rm \ GeV}$	$H_{\rm T} > 1000 { m GeV}$	$H_{\rm T} > 1000 { m ~GeV}$
	$H_{\rm T} > 1500 {\rm \ GeV}$	$H_{\rm T} > 1500 {\rm \ GeV}$	$H_{\rm T} > 1500 { m ~GeV}$
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss}$ >100 GeV	$E_{\rm T}^{\rm miss} > 100~{\rm GeV}$	$E_{\rm T}^{\rm miss,tru} > 100 {\rm GeV}$
	$E_{\rm T}^{\rm miss}$ >200 GeV	$E_{\rm T}^{\rm miss} > 200~{\rm GeV}$	$E_{\rm T}^{\rm miss,tru} > 200 { m GeV}$
	$E_{\rm T}^{\rm miss} > 300 {\rm GeV}$	$E_{\rm T}^{\rm miss} > 300~{\rm GeV}$	$E_{\rm T}^{\rm \hat{m}iss,tru} > 300 {\rm GeV}$
Тор	ℓb	$n_{\ell=e,\mu} \ge 1, n_{b\text{-jet}} \ge 1,70\% \text{ WP}$	$n_{\ell=e,\mu} \ge 1, n_{b\text{-jet}} \ge 1$
	$t_{ m lep}$	$n_{\ell=e,\mu} = 1$, $n_{\text{jet}} = n_{b\text{-jet}} = 1$, 70% WP	$n_{\ell=e,\mu} = 1, n_{\text{jet}} = n_{b\text{-jet}} = 1$
	$t_{ m had}$	$n_{\ell=e,\mu} = 0$, $n_{\text{jet}} = 3$, $n_{b\text{-jet}} = 1$, 70% WP, BDT _{top} > 0.9	$n_{\ell=e,\mu} = 0, n_{\text{jet}} = 3, n_{b\text{-jet}} = 1$
Lepton	≥1ℓ	$n_{\ell=e,\mu} \ge 1$	$n_{\ell=e,\mu} \ge 1$
	2ℓ	$ee, \mu\mu$, or $e\mu$	$ee, \mu\mu$, or $e\mu$
	2 <i>ℓ–</i> Z ′	ee , $\mu\mu$, $e\mu$; $ m_{\ell\ell}-m_Z > 10$ GeV for same-flavour leptons	ee , $\mu\mu$, $e\mu$; $ m_{\ell\ell}-m_Z > 10$ GeV for same-flavour leptons
	SS-2ℓ	ee , $\mu\mu$, or $e\mu$ with same charge	ee , $\mu\mu$, or $e\mu$ with same charge
	≥3ℓ	$n_{\ell=e,\mu} \geq 3$	$n_{\ell=e,\mu} \geq 3$
	$\geq 2\tau$	$n_{\tau,\mathrm{had}} \geq 2$	$n_{\tau} \geq 2$
Photon	$1\gamma - m_{\gamma\gamma}^{12}$	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_1, γ_2	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_1, γ_2
	$1\gamma - m_{\gamma\gamma}^{23}$	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_2, γ_3	$n_{\gamma} \geq 3$, $m_{\gamma\gamma}$ defined with γ_2, γ_3

Combination and interpretation

- A combined measurement on the Higgs cross-sections was published for the 10 year anniversary of the Higgs boson discovery (<u>Nature 607 (2022) 52-59</u>)
- The result includes the input measurements from $\gamma\gamma$, **ZZ***, **WW***, **bb and** $\tau\tau$ **channels**, as well as the searches for the $\mu\mu$, $Z\gamma$, cc and invisible decays.
- The combined results are in good agreement with the SM predictions..

$$\mu = 1.05 \pm 0.06 = 1.05 \pm 0.03$$
 (stat.) ± 0.03 (exp.) ± 0.04 (sig. th.) ± 0.02 (bkg. th.).

Interpretation: K-framework

- Event rates for Higgs production and decay processes are interpreted in terms of coupling modifiers (k)
 multiplying the SM Higgs boson coupling strengths to other particles..
- Results are compatible with SM.
 - o kc < 8.5 (12.4) at 95% CL, which is improved wrt the H→cc analysis with constraint power from the Higgs total width
 - o Br of undetected Higgs decays (Bu) is also constrained

 $\kappa_p^2 = \sigma_p / \sigma_p^{\rm SM}$

- Standard Model Effective Field Theory (SMEFT, <u>ref</u>)
 describes the deviations from SM predictions in terms of new
 effective interactions caused by new physics at very large
 energy scales.
- New interactions are scaled by Wilson coefficients which are free parameters of the theory.
- Limits are set on the selected linear combinations of Wilson coefficients (eigenvectors) in a simultaneous fit of all relevant coefficients. (<u>ATL-PHYS-PUB-2022-037</u>)

$$\begin{split} \mathcal{L}_{\text{SMEFT}} &= \mathcal{L}_{\text{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \dots, \\ \mathcal{L}^{(\text{d})} &= \sum_{i} \frac{C_{i}^{(\text{d})}}{\Lambda^{\text{d}-4}} \mathcal{Q}_{i}^{(\text{d})} \text{ for d} > 4. \end{split}$$

Decay channel	Target Production Modes	\mathcal{L} [fb ⁻¹]
$H \rightarrow \gamma \gamma$	ggF, VBF, WH , ZH , $t\bar{t}H$, tH	139
$H \to ZZ^*$	ggF, VBF, WH , ZH , $t\bar{t}H(4\ell)$	139
$H \to WW^*$	ggF, VBF	139
H o au au	ggF, VBF, WH , ZH , $t\bar{t}H(\tau_{\rm had}\tau_{\rm had})$	139
	WH, ZH	139
$H o b ar{b}$	VBF	126
	$t \overline{t} H$	139

Beside Higgs production and decay rate, the interpretation also includes electroweak cross-section measurements by ATLAS and EWPO measurements by LEP

Summary

- Measurement of the Higgs boson production and decay rates is one of the most important tasks for the high energy physics
- The analysis with full Run2 ATLAS data are well established, most of the sensitive channels to measure Higgs properties are published
 - The analysis with Run3 data has started.
 - The measurements are interpreted in the k-framework and within an effective field theory framework
 - All measurements are in a good agreement with the predictions of the Standard Model

Backup

Higgs to WW* (|v|v + |v|j) for VH)

- VH: lvlv + lvjj, combining 2LOS, 2LSS, 3L and 4L selections, performing S+B fits on discriminant variables (based on ANN, RNN, BDT scores)
- WH and ZH cross-sections are measured and combined across the four channels, the results are compatible with SM

Channel	POI / Z_0	Expected	Observed
Opposite-sign 2ℓ	μ_{VH}	$1.00^{+1.02}_{-0.98}$	$1.94^{+1.07}_{-1.02}$
	Z_0	1.0	1.9
Same-sign 2ℓ	μ_{WH}	$1.00^{+0.61}_{-0.60}$	-0.08 ± 0.58
	Z_0	1.6	0.0
3ℓ	μ_{WH}	$1.00^{+0.44}_{-0.40}$	$0.64^{+0.42}_{-0.37}$
	Z_0	2.8	1.8
4ℓ	μ_{ZH}	$1.00^{+0.47}_{-0.39}$	$1.59^{+0.54}_{-0.47}$
	Z_0	3.1	4.5
Combined 1-POI	μ_{VH}	$1.00^{+0.27}_{-0.25}$	$0.92^{+0.25}_{-0.23}$
	Z_0	4.7	4.6
	μ_{WH}	$1.00^{+0.35}_{-0.33}$	$0.45^{+0.32}_{-0.30}$
Combined 2-POI	μ_{ZH}	$1.00^{+0.47}_{-0.39}$	$1.64^{+0.55}_{-0.47}$
Combined 2-1 Of	Z_0^{WH}	3.3	1.5
	Z_0^{ZH}	3.1	4.6

Top-Higgs Yukawa coupling and Higgs CP

- Top-Higgs Yukawa coupling (kt) and CP properties can be measured in particular channels
 - Recent result ttH, Higgs bb: <u>CERN-EP-2022-208</u>
 - Reference 1 ttH, Higgs to γγ: PRL 125 (2020) 061802
 - Reference 2 Four top observation (with ttH, Higgs to WW and tt): <u>CERN-EP-2023-055</u>
- The measurements are all compatible with the SM

 \sqrt{s} = 13 TeV, 139 fb⁻¹

ATLAS

 $H \rightarrow yy$