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CASE FOR A MUON COLLIDER

 Muon colliders can extend the precision 

frontier and the energy frontier in comparison 

to 𝑒+𝑒− colliders and 𝑝𝑝 colliders.

 An 𝒪(10)TeV muon collider with 𝒪(10/𝑎𝑏)
luminosity could produce an order of 

magnitude more Higgs bosons compared to 

𝑒+𝑒− “Higgs factories”. It will additionally 

produce 𝒪(104) di-Higgs events. 
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VECTOR-BOSON 

FUSION &

COLLINEAR 

FACTORIZATION

 Vector boson fusion provides a dominant channel.

 We consider collinear factorization in final state splittings

for High-energy electroweak processes. 

 If the daughter particles B and C are approximately collinear 

to the offshell parent particle A*, we have

𝑑𝜎𝑌,𝐵𝐶 ≃ 𝑑𝜎𝑌,𝐴∗ × 𝑑𝑃𝐴∗→𝐵+𝐶

 To compute the hard cross-section, we convolute the 

partonic cross-section with the W-boson PDFs.
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SUPER-

RENORMALIZABLE 

SPLITTING

 All gauge and Yukawa splittings in the unbroken electroweak 
theory scale as 𝑑𝑘𝑇

2/𝑘𝑇
2 ,  so typical splittings in the broken 

theory scale the same way. 

 After SSB, we also have ‘super-renormalizable’ splittings (or 
ultra-collinear) in the broken theory that scale as 𝑚2𝑑𝑘𝑇

2/𝑘𝑇
4

 In particular,  we look at ℎ → ℎℎ splitting.  We can calculate the 
jet function cross-section for the process with an offshell initial 
Higgs at an observed invariant jet mass 𝑚

JH(𝑚
2) =

𝜆2𝑣2

16𝜋

1−
4𝑚ℎ

2

𝑚2

𝑚2−𝑚ℎ
2 2
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QCD BACKGROUND

 The hard process that we study, at fixed jet mass 𝑚, for 

QCD backgrounds is

𝑊+𝑊− → 𝑞 𝑞

 The differential cross-section can be obtained by taking the 

inverse Laplace Transform of the NLL resummed cross-

section 

𝑑𝜎

𝑑𝑚2 = 𝜎0 ∗
𝑑

𝑑𝑚2 𝑅𝑄𝐶𝐷
𝑚2

𝑄2
, 𝑄

where, 𝑚2 is the invariant mass squared of the final state 

jets.
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SUPER-RENORMALIZABLE HIGGS JET DISTRIBUTION 

 Integrated cross-section for Higgs jets  

𝑅𝐻 𝑚2 =
4𝑚ℎ

2
𝑚2

𝐽𝐻 𝑚′2 𝑑𝑚′2

4𝑚ℎ
2

∞
𝐽𝐻 𝑚′2 𝑑𝑚′2

 The Higgs jet distribution is given by 

1

𝜎𝐻𝐻

𝑑𝜎

𝑑𝑚2 =
𝑑

𝑑𝑚2 𝑅 𝑚2 =
1

𝜎𝑡𝑜𝑡
𝐽𝐻 𝑚2

𝑑𝜎

𝑑𝑚2 =
𝜎𝐻𝐻
𝜎𝑡𝑜𝑡

𝐽𝐻 𝑚2

 This is the lowest order in 𝛼𝐸𝑊. What about higher-
order corrections in 𝑅𝐻?
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ELECTRO-WEAK CORRECTIONS

 Typical higher order Electroweak corrections that go as double log 

will look like (𝛼𝐸𝑊 ≃ 0.033)

𝐶𝐸𝑊
(1)

=
−2𝛼𝐸𝑊

𝜋
ln2(𝑄2/4𝑚𝐻

2 )

≃ −0.0866 ∗ ln2 4 ∗ 𝑄 𝑇𝑒𝑉

 While these corrections are not small, they can be resummed.  

This will be part of future work.
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𝑪𝑬𝑾
𝟏
(𝟏𝟎 𝑻𝒆𝑽) 𝑪𝑬𝑾

𝟏
(𝟑𝟎 𝑻𝒆𝑽) 𝑪𝑬𝑾

𝟏
(𝟏𝟎𝟎 𝑻𝒆𝑽)

-1.178 -1.984 -3.108

4𝑚𝐻
2 ≪ 𝑘⊥

2 ≪ 𝑄2
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COMPARISON PLOTS
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𝐶𝐸𝑊
1

10 𝑇𝑒𝑉 = −1.178 𝐶𝐸𝑊
1

30 𝑇𝑒𝑉 = −1.984 𝐶𝐸𝑊
1

100 𝑇𝑒𝑉 = −3.108
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CONCLUSIONS

 We calculated the “Super-renormalizable” Higgs jet distribution at lowest order in the Jet function and the Hard 

cross section.

 We showed that at higher center of mass energies, the Higgs jet distribution shows a distinctive peak compared 

to QCD background jets.

 The higher order EW corrections, albeit not small, can be handled via resummation.  They will give us Sudakov

suppression but won’t change the qualitative picture.

 Muon collider could provide an interesting opportunity to observe these jets with applications to test BSM 

physics.
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QCD BACKGROUND

 For a fixed jet mass, 𝑚, we consider a well-known infrared 

safe event shape variable, Thrust.

1 −
m2

Q2
≃ 1 − 𝜏 ≡ 𝑇 𝑁 = max

ො𝑛

σ𝑖 𝑝𝑖 . ො𝑛

σ𝑗 𝑝𝑗

 The differential cross-section for such di-jet events at fixed 

values of 𝜏 is given by 

𝑑𝜎(𝜏, 𝑄)

𝑑𝜏
=

1

2𝑄2


𝑁

𝑀 𝑁 2 𝛿(𝜏 − 𝜏(𝑁))

 We work with the integrated cross-section or Radiator 

calculated for the 𝑒+𝑒− annihilation 

𝑅 𝜏, 𝑄 =
1

𝜎𝑡𝑜𝑡
න
0

𝜏

𝑑𝜏′
𝑑𝜎 𝜏′, 𝑄

𝑑𝜏′
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QCD BACKGROUND

 The differential cross-section can be obtained by taking the 

inverse Laplace Transform of the NLL resummed exponent 

to get the Radiator. 

1

𝜎𝑡𝑜𝑡

𝑑𝜎 𝜏, 𝑄

𝑑𝜏
=
1

𝜏

𝑑

𝑑 ln𝜏
𝑅(𝜏, 𝑄)

 Using 𝜏 = 𝑚2/𝑄2, we calculate 𝑑𝜎/𝑑𝑚2

 The hard process that we study, at fixed jet mass 𝑚, for 

QCD backgrounds is

𝑊+𝑊− → 𝑞 𝑞
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MUON COLLIDER

Higgs production as a fraction of “total” cross-

section

Equivalent cross-section at pp collider v/s 

muon collider 17
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DI-JET CROSS SECTION

𝑒+ + 𝑒− → 𝐽1 𝑁 + 𝐽2 𝑁

 The differential cross section for such di-jet events at fixed values of 𝜏𝑎 is given by
𝑑𝜎(𝜏𝑎, 𝑄)

𝑑𝜏𝑎
=

1

2𝑄2


𝑁

𝑀 𝑁 2 𝛿(𝜏𝑎 − 𝜏𝑎(𝑁))

 For di-jet cross sections, we look at 𝜏𝑎 ≪ 1, and we take the laplace transform of the cross-

section

𝜎 𝜈, 𝑄, 𝑎 = න
0

1

𝑑𝜏𝑎𝑒
−𝜈𝜏𝑎

𝑑𝜎(𝜏𝑎, 𝑄)

𝑑𝜏𝑎

 Large logarithms of 𝜈 need to be resummed.
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RESUMMED CROSS-SECTION AT NLL

 The Next-to-leading-log (NLL) resummed cross-section for 𝑎 < 1 in moment space, can 

be written as

1

𝜎𝑡𝑜𝑡
𝜎 𝜈, 𝑄, 𝑎 = exp{2න

0

1
𝑑𝑢

𝑢
[න
𝑢2𝑄2

𝑢𝑄2 𝑑𝑝𝑇
2

𝑝𝑇
2 𝐴 𝛼𝑠 𝑝𝑇 𝑒−𝑢

1−𝑎𝜈 𝑝𝑇/𝑄
𝑎
− 1

+
1

2
𝐵(𝛼𝑠(𝑄√𝑢))(𝑒

−𝑢 𝜈/2
2

2−𝑎 − 1)]}

≡ 𝒥 𝜈, 𝑄, 𝑎 2
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RESUMMED CROSS-SECTION AT NLL

 The resummation is in terms of anomalous dimensions 𝐴 𝛼𝑠 and 𝐵(𝛼𝑠) which have finite 

expressions in the running coupling,

𝐴 𝛼𝑠 = 

𝑛=1

∞

𝐴 𝑛
𝛼𝑠
𝜋

𝑛

 The coefficients of the perturbative expansion are well known at NLL,

𝐴(1) = 𝐶𝐹 , 𝐵(1) = −
3

2
𝐶𝐹

𝐴(2) =
1

2
𝐶𝐹[𝐶𝐴

67

18
−
𝜋2

6
−
10

9
𝑇𝐹𝑁𝑓]
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RADIATOR

 We work with integrated cross-section or the Radiator

𝑅 𝜏𝑎, 𝑄 =
1

𝜎𝑡𝑜𝑡
න
0

𝜏𝑎

𝑑𝜏𝑎
′
𝑑𝜎 𝜏𝑎

′ , 𝑄

𝑑𝜏𝑎
′

 The Radiator can be directly calculated from the jet function 𝒥 𝜈, 𝑄, 𝑎 in transform space by 

𝑅 𝜏𝑎, 𝑄 =
1

2𝜋𝑖
න
𝐶

𝑑𝜈

𝜈
𝑒𝜈𝜏𝑎 [𝒥 𝜈, 𝑄, 𝑎 ]2

𝑅 𝜏𝑎, 𝑄 =
exp 2 ln

1
𝜏𝑎

𝑔1 𝑥, 𝑎 + 2𝑔2 𝑥, 𝑎 + 2 2 − 𝑎 𝑥2 ln
2𝜇
𝑄

𝑔1
′ 𝑥, 𝑎

Γ 1 − 2𝑔1 𝑥, 𝑎 − 2𝑥𝑔1
′ 𝑥, 𝑎
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RADIATOR

𝑔1 𝑥, 𝑎 = −
4

𝛽0

1

1 − 𝑎

1

𝑥
𝐴 1

1

2 − 𝑎
− 𝑥 ln 1 − 2 − 𝑎 𝑥 − 1 − 𝑥 ln 1 − 𝑥

𝑔2 𝑥, 𝑎 =
2

𝛽0
𝐵(1) ln 1 − 𝑥 −

8

𝛽0
2

1

1 − 𝑎
𝐴 1 ln 1 − 𝑥 − ln 1 − 2 − 𝑎 𝑥

+
4

𝛽0
ln 2

1

1−𝑎
𝐴 1 1

2−𝑎
− 𝑥 ln 1 − 2 − 𝑎 𝑥 − 1 − 𝑥 ln 1 − 𝑥

−
𝛽1

𝛽0
3

1

1 − 𝑎
𝐴 1 [2 ln 1 − 2 − 𝑎 𝑥 − 2 2 − 𝑎 ln 1 − 𝑥

+ ln2 1 − 2 − 𝑎 𝑥 − 2 − 𝑎 ln2 1 − 𝑥 ]
where, 

𝑥 =
𝛼𝑠 𝜇

𝜋

𝛽0
2 2 − 𝑎

ln(1/𝜏𝑎)

22PHENO '23



COMPARISON PLOTS
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