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= Muon colliders

= Vector boson Fusion and collinear factorization

OUTLINE = Super-renormalizable splitting

= QCD di-jet events

= Comparison plots




CASE FOR A MUON COLLIDER

Higgs production as a fraction of “total” cross-section

= Muon colliders can extend the precision 10°
frontier and the energy frontier in comparison s
— . . 1072_

to ete™ colliders and pp colliders.
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= An 0(10) TeV muon collider with O(10/ab) el
luminosity could produce an order of
magnitude more Higgs bosons compared to
et e™ “Higgs factories”. It will additionally B
produce 0(10%) di-Higgs events.
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VECTOR-BOSON
FUSION &
COLLINEAR
FACTORIZATION

= Vector boson fusion provides a dominant channel.

=  We consider collinear factorization in final state splittings
for High-energy electroweak processes.

= If the daughter particles B and C are approximately collinear
to the offshell parent particle A*, we have
doypc = doy s~ X APgpyc

" To compute the hard cross-section, we convolute the
partonic cross-section with the W-boson PDFs.

ref: T. Han et.al. arXiv:1611.00788v2
Cuomo et.al.arXiv:1911.12366v2

ref: T. Han et.al. arXiv:2007.14300v3
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= All gauge and Yukawa splittings in the unbroken electroweak

theory scale as dk%/k?, so typical splittings in the broken
theory scale the same way.

SUPER -
RENORMALIZABLE
SPLITTING

= After SSB, we also have ‘super-renormalizable’ splittings (or
ultra-collinear) in the broken theory that scale as m2dk% /k7

= |In particular, we look at h — hh splitting. We can calculate the
jet function cross-section for the process with an offshell initial
Higgs at an observed invariant jet mass m
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= The hard process that we study, at fixed jet mass m, for
QCD backgrounds is
WTW~ >qq

= The differential cross-section can be obtained by taking the
inverse Laplace Transform of the NLL resummed cross-
section

2

do d m
dm2 = Op * dm2 RQCD @)Q

where, m? is the invariant mass squared of the final state
jets.
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SUPER-RENORMALIZABLE HIGGS JET DISTRIBUTION

= Integrated cross-section for Higgs jets

f;lrllzl ]H (mIZ)dmIZ

Ry(m?) = i
Jim3z Ju(m'2)dm’2

= The Higgs jet distribution is given by

1da_dR(2)_1(2)
oy dm?  dm? m —th]Hm

OHH 2
= Ju (m*)
dm? O

= This is the lowest order in agy,. What about higher-
order corrections in Ry?
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Jet distribution as a function of jet invariant mass
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ELECTRO-WEAK CORRECTIONS

= Typical higher order Electroweak corrections that go as double log P
will look like (azy = 0.033)
—2a k
Cpw = ——In*(Q*/4m}) g
~ —0.0866 * In2(4 * Q[TeV])

4mf <K kI < Q2
cM (10 Tev) cM (30 Tev) ¢t (100 Tev)
-1.178 -1.984 -3.108

=  While these corrections are not small, they can be resummed.
This will be part of future work.
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COMPARISON PLOTS
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CONCLUSIONS

"  We calculated the “Super-renormalizable” Higgs jet distribution at lowest order in the Jet function and the Hard
cross section.

=  We showed that at higher center of mass energies, the Higgs jet distribution shows a distinctive peak compared
to QCD background jets.

=  The higher order EW corrections, albeit not small, can be handled via resummation. They will give us Sudakov
suppression but won’t change the qualitative picture.

= Muon collider could provide an interesting opportunity to observe these jets with applications to test BSM
physics.
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BACKUP SLIDES



QCD BACKGROUND

ALTERNATE

For a fixed jet mass, m, we consider a well-known infrared
safe event shape variable, Thrust.
2 — A
m Z lpi- 7o

1-—=1—-17=T(N)=ma
Q* vl
The differential cross-section for such di-jet events at fixed
values of 7 is given by

do(7,Q)
dt 202

Z|M(N>|2 6( = T(N)

We work with the integrated cross-section or Radiator
calculated for the e*e™ annihilation

R(7,Q) =

JT  do(7,Q)
At ———
0 dt

Otot

ref: https://arxiv.org/abs/hep-ph/0307394v2
ref: S. Catani et.al Nuclear Physics B,Volume 407, Issue |, 1993, Pages 3-42, ISSN
0550-3213
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QCD BACKGROUND

ref: https://arxiv.org/abs/hep-ph/0307394v2
ref: S. Catani et.al Nuclear Physics B, Volume 407, Issue I, 1993, Pages 3-42, ISSN 0550-3213

The differential cross-section can be obtained by taking the
inverse Laplace Transform of the NLL resummed exponent
to get the Radiator.

1 do(r,Q) 1 d

R(z,Q)

0o dr  Tdlnt
Using 7 = m?/Q?, we calculate do/dm?

The hard process that we study, at fixed jet mass m, for
QCD backgrounds is

WW~--qq
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DI-JET CROSS SECTION

e"+e” = J1(N) +/],(N)
= The differential cross section for such di-jet events at fixed values of 7, is given by

do(tq,Q) 1
T = 5o Z‘IM(N)IZ 6(ta = Ta(N))

= For di-jet cross sections, we look at 7, < 1,and we take the laplace transform of the cross-
section

1
5(v,Q,a) = j dz, e=vra 890 @)

0 dtg

= large logarithms of v need to be resummed.
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RESUMMED CROSS-SECTION AT NLL

" The Next-to-leading-log (NLL) resummed cross-section for a < 1 in moment space, can
be written as

uQ?

1 d a a
6(v,Q,a) = exp{Zf _[ pTA(aS(pT))(e‘”l vpr/Q® — 1)
Otot 0 u2Q?2 p4

b2 B(@y(QVa) (e M/ — 1y
= [J(v,Q, )]

PPPPPPPP



RESUMMED CROSS-SECTION AT NLL

= The resummation is in terms of anomalous dimensions A(a;) and B(ag) which have finite
expressions in the running coupling,

Alag) = i A (%)n
n=1

= The coefficients of the perturbative expansion are well known at NLL,

3
AWM =, B = ——Cp

2
A(Z)—EC [C 67_7T2 —ETN]
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RADIATOR

= We work with integrated cross-section or the Radiator

R(Ta: Q) — ! ] adTél dO-(Ta/’ Q)

Otot Jo dtg

= The Radiator can be directly calculated from the jet function J(v, Q, a) in transform space by

R(1a,Q) = — j Y evia[3(v,Q, )]

211

exp {2 In (%) g1(x,a) + 2g,(x,a) + 2(2 — a)x? In (%t) g1 (x, a)}
R(7q,Q) = 1 —2g,(x,a) — 2xg;(x,a)]
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RADIATOR

(x,a) = s+ 1 lA(l) ! —x|In(1-2—-a)x) — (1 —x)In(1 —x)
g1  Bol—ax 2—a

go(x,a) = 13(1) In(1 —x) — 82 ! A(l) [In(1—x) —In(1-(2—a)x)]
,80 0 1-

Eln 2— AW [(— — x) In1-2-a)x)— (1 —x)In(1 — x)]

—[f; - i ~A®R2In(1 - (2 - @)x) — 2(2 — @) In(1 - x)
0

+In?(1 -2 —-a)x) —(2—a)In*(1 —x)]
where,

. as(uw)  Po
_ T 2(2 . Cl) ln(l/Ta)
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COMPARISON PLOTS
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