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OUTLINE

 Muon colliders

 Vector boson Fusion and collinear factorization

 Super-renormalizable splitting

 QCD di-jet events
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CASE FOR A MUON COLLIDER

 Muon colliders can extend the precision 

frontier and the energy frontier in comparison 

to 𝑒+𝑒− colliders and 𝑝𝑝 colliders.

 An 𝒪(10)TeV muon collider with 𝒪(10/𝑎𝑏)
luminosity could produce an order of 

magnitude more Higgs bosons compared to 

𝑒+𝑒− “Higgs factories”. It will additionally 

produce 𝒪(104) di-Higgs events. 
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Higgs production as a fraction of “total” cross-section

PHENO '23



VECTOR-BOSON 

FUSION &

COLLINEAR 

FACTORIZATION

 Vector boson fusion provides a dominant channel.

 We consider collinear factorization in final state splittings

for High-energy electroweak processes. 

 If the daughter particles B and C are approximately collinear 

to the offshell parent particle A*, we have

𝑑𝜎𝑌,𝐵𝐶 ≃ 𝑑𝜎𝑌,𝐴∗ × 𝑑𝑃𝐴∗→𝐵+𝐶

 To compute the hard cross-section, we convolute the 

partonic cross-section with the W-boson PDFs.
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SUPER-

RENORMALIZABLE 

SPLITTING

 All gauge and Yukawa splittings in the unbroken electroweak 
theory scale as 𝑑𝑘𝑇

2/𝑘𝑇
2 ,  so typical splittings in the broken 

theory scale the same way. 

 After SSB, we also have ‘super-renormalizable’ splittings (or 
ultra-collinear) in the broken theory that scale as 𝑚2𝑑𝑘𝑇

2/𝑘𝑇
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 In particular,  we look at ℎ → ℎℎ splitting.  We can calculate the 
jet function cross-section for the process with an offshell initial 
Higgs at an observed invariant jet mass 𝑚

JH(𝑚
2) =

𝜆2𝑣2

16𝜋

1−
4𝑚ℎ

2

𝑚2

𝑚2−𝑚ℎ
2 2
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QCD BACKGROUND

 The hard process that we study, at fixed jet mass 𝑚, for 

QCD backgrounds is

𝑊+𝑊− → 𝑞 𝑞

 The differential cross-section can be obtained by taking the 

inverse Laplace Transform of the NLL resummed cross-

section 

𝑑𝜎

𝑑𝑚2 = 𝜎0 ∗
𝑑

𝑑𝑚2 𝑅𝑄𝐶𝐷
𝑚2

𝑄2
, 𝑄

where, 𝑚2 is the invariant mass squared of the final state 

jets.
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SUPER-RENORMALIZABLE HIGGS JET DISTRIBUTION 

 Integrated cross-section for Higgs jets  

𝑅𝐻 𝑚2 =
4𝑚ℎ׬

2
𝑚2

𝐽𝐻 𝑚′2 𝑑𝑚′2

4𝑚ℎ׬
2

∞
𝐽𝐻 𝑚′2 𝑑𝑚′2

 The Higgs jet distribution is given by 

1

𝜎𝐻𝐻

𝑑𝜎

𝑑𝑚2 =
𝑑

𝑑𝑚2 𝑅 𝑚2 =
1

𝜎𝑡𝑜𝑡
𝐽𝐻 𝑚2

𝑑𝜎

𝑑𝑚2 =
𝜎𝐻𝐻
𝜎𝑡𝑜𝑡

𝐽𝐻 𝑚2

 This is the lowest order in 𝛼𝐸𝑊. What about higher-
order corrections in 𝑅𝐻?
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ELECTRO-WEAK CORRECTIONS

 Typical higher order Electroweak corrections that go as double log 

will look like (𝛼𝐸𝑊 ≃ 0.033)

𝐶𝐸𝑊
(1)

=
−2𝛼𝐸𝑊

𝜋
ln2(𝑄2/4𝑚𝐻

2 )

≃ −0.0866 ∗ ln2 4 ∗ 𝑄 𝑇𝑒𝑉

 While these corrections are not small, they can be resummed.  

This will be part of future work.
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𝑪𝑬𝑾
𝟏
(𝟏𝟎 𝑻𝒆𝑽) 𝑪𝑬𝑾

𝟏
(𝟑𝟎 𝑻𝒆𝑽) 𝑪𝑬𝑾

𝟏
(𝟏𝟎𝟎 𝑻𝒆𝑽)

-1.178 -1.984 -3.108

4𝑚𝐻
2 ≪ 𝑘⊥

2 ≪ 𝑄2
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COMPARISON PLOTS
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𝐶𝐸𝑊
1

10 𝑇𝑒𝑉 = −1.178 𝐶𝐸𝑊
1

30 𝑇𝑒𝑉 = −1.984 𝐶𝐸𝑊
1

100 𝑇𝑒𝑉 = −3.108
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CONCLUSIONS

 We calculated the “Super-renormalizable” Higgs jet distribution at lowest order in the Jet function and the Hard 

cross section.

 We showed that at higher center of mass energies, the Higgs jet distribution shows a distinctive peak compared 

to QCD background jets.

 The higher order EW corrections, albeit not small, can be handled via resummation.  They will give us Sudakov

suppression but won’t change the qualitative picture.

 Muon collider could provide an interesting opportunity to observe these jets with applications to test BSM 

physics.
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QCD BACKGROUND

 For a fixed jet mass, 𝑚, we consider a well-known infrared 

safe event shape variable, Thrust.

1 −
m2

Q2
≃ 1 − 𝜏 ≡ 𝑇 𝑁 = max

ො𝑛

σ𝑖 𝑝𝑖 . ො𝑛

σ𝑗 𝑝𝑗

 The differential cross-section for such di-jet events at fixed 

values of 𝜏 is given by 

𝑑𝜎(𝜏, 𝑄)

𝑑𝜏
=

1

2𝑄2
෍

𝑁

𝑀 𝑁 2 𝛿(𝜏 − 𝜏(𝑁))

 We work with the integrated cross-section or Radiator 

calculated for the 𝑒+𝑒− annihilation 

𝑅 𝜏, 𝑄 =
1

𝜎𝑡𝑜𝑡
න
0

𝜏

𝑑𝜏′
𝑑𝜎 𝜏′, 𝑄

𝑑𝜏′
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QCD BACKGROUND

 The differential cross-section can be obtained by taking the 

inverse Laplace Transform of the NLL resummed exponent 

to get the Radiator. 

1

𝜎𝑡𝑜𝑡

𝑑𝜎 𝜏, 𝑄

𝑑𝜏
=
1

𝜏

𝑑

𝑑 ln𝜏
𝑅(𝜏, 𝑄)

 Using 𝜏 = 𝑚2/𝑄2, we calculate 𝑑𝜎/𝑑𝑚2

 The hard process that we study, at fixed jet mass 𝑚, for 

QCD backgrounds is

𝑊+𝑊− → 𝑞 𝑞
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MUON COLLIDER

Higgs production as a fraction of “total” cross-

section

Equivalent cross-section at pp collider v/s 

muon collider 17
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DI-JET CROSS SECTION

𝑒+ + 𝑒− → 𝐽1 𝑁 + 𝐽2 𝑁

 The differential cross section for such di-jet events at fixed values of 𝜏𝑎 is given by
𝑑𝜎(𝜏𝑎, 𝑄)

𝑑𝜏𝑎
=

1

2𝑄2
෍

𝑁

𝑀 𝑁 2 𝛿(𝜏𝑎 − 𝜏𝑎(𝑁))

 For di-jet cross sections, we look at 𝜏𝑎 ≪ 1, and we take the laplace transform of the cross-

section

෤𝜎 𝜈, 𝑄, 𝑎 = න
0

1

𝑑𝜏𝑎𝑒
−𝜈𝜏𝑎

𝑑𝜎(𝜏𝑎, 𝑄)

𝑑𝜏𝑎

 Large logarithms of 𝜈 need to be resummed.
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RESUMMED CROSS-SECTION AT NLL

 The Next-to-leading-log (NLL) resummed cross-section for 𝑎 < 1 in moment space, can 

be written as

1

𝜎𝑡𝑜𝑡
෤𝜎 𝜈, 𝑄, 𝑎 = exp{2න

0

1
𝑑𝑢

𝑢
[න
𝑢2𝑄2

𝑢𝑄2 𝑑𝑝𝑇
2

𝑝𝑇
2 𝐴 𝛼𝑠 𝑝𝑇 𝑒−𝑢

1−𝑎𝜈 𝑝𝑇/𝑄
𝑎
− 1

+
1

2
𝐵(𝛼𝑠(𝑄√𝑢))(𝑒

−𝑢 𝜈/2
2

2−𝑎 − 1)]}

≡ 𝒥 𝜈, 𝑄, 𝑎 2
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RESUMMED CROSS-SECTION AT NLL

 The resummation is in terms of anomalous dimensions 𝐴 𝛼𝑠 and 𝐵(𝛼𝑠) which have finite 

expressions in the running coupling,

𝐴 𝛼𝑠 = ෍

𝑛=1

∞

𝐴 𝑛
𝛼𝑠
𝜋

𝑛

 The coefficients of the perturbative expansion are well known at NLL,

𝐴(1) = 𝐶𝐹 , 𝐵(1) = −
3

2
𝐶𝐹

𝐴(2) =
1

2
𝐶𝐹[𝐶𝐴

67

18
−
𝜋2

6
−
10

9
𝑇𝐹𝑁𝑓]
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RADIATOR

 We work with integrated cross-section or the Radiator

𝑅 𝜏𝑎, 𝑄 =
1

𝜎𝑡𝑜𝑡
න
0

𝜏𝑎

𝑑𝜏𝑎
′
𝑑𝜎 𝜏𝑎

′ , 𝑄

𝑑𝜏𝑎
′

 The Radiator can be directly calculated from the jet function 𝒥 𝜈, 𝑄, 𝑎 in transform space by 

𝑅 𝜏𝑎, 𝑄 =
1

2𝜋𝑖
න
𝐶

𝑑𝜈

𝜈
𝑒𝜈𝜏𝑎 [𝒥 𝜈, 𝑄, 𝑎 ]2

𝑅 𝜏𝑎, 𝑄 =
exp 2 ln

1
𝜏𝑎

𝑔1 𝑥, 𝑎 + 2𝑔2 𝑥, 𝑎 + 2 2 − 𝑎 𝑥2 ln
2𝜇
𝑄

𝑔1
′ 𝑥, 𝑎

Γ 1 − 2𝑔1 𝑥, 𝑎 − 2𝑥𝑔1
′ 𝑥, 𝑎
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RADIATOR

𝑔1 𝑥, 𝑎 = −
4

𝛽0

1

1 − 𝑎

1

𝑥
𝐴 1

1

2 − 𝑎
− 𝑥 ln 1 − 2 − 𝑎 𝑥 − 1 − 𝑥 ln 1 − 𝑥

𝑔2 𝑥, 𝑎 =
2

𝛽0
𝐵(1) ln 1 − 𝑥 −

8

𝛽0
2

1

1 − 𝑎
𝐴 1 ln 1 − 𝑥 − ln 1 − 2 − 𝑎 𝑥

+
4

𝛽0
ln 2

1

1−𝑎
𝐴 1 1

2−𝑎
− 𝑥 ln 1 − 2 − 𝑎 𝑥 − 1 − 𝑥 ln 1 − 𝑥

−
𝛽1

𝛽0
3

1

1 − 𝑎
𝐴 1 [2 ln 1 − 2 − 𝑎 𝑥 − 2 2 − 𝑎 ln 1 − 𝑥

+ ln2 1 − 2 − 𝑎 𝑥 − 2 − 𝑎 ln2 1 − 𝑥 ]
where, 

𝑥 =
𝛼𝑠 𝜇

𝜋

𝛽0
2 2 − 𝑎

ln(1/𝜏𝑎)
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COMPARISON PLOTS
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