# Hadronization Fractions and Exotic Heavy Flavor at CMS

Matthew Jones - Purdue University
Phenomenology 2023 Symposium - Pittsburgh
<a href="https://indico.cern.ch/event/1218225/">https://indico.cern.ch/event/1218225/</a>

May 8-10, 2023





#### **Outline**

- Bottom quark hadronization fractions at hadron colliders
  - Measurements of hadronization fractions
  - Observations from LHC-b
  - Recent CMS measurements
    - $\circ J/\psi$  final states
    - Hadronic final states
- Exotic heavy flavor production
  - Observation of X(6900)
  - $J/\psi J/\psi$  mass spectrum at CMS
  - Resonance fits
- Triple  $J/\psi$  production
  - Measurement of  $\sigma_{\rm eff,DPS}$

#### **Bottom Quark Hadronization Fractions**

Number of weakly decaying B hadrons reconstructed in an exclusive final state:

$$N_X = \sigma_b \cdot A \cdot f_q \cdot \mathcal{B}(B_q \to X) \cdot \epsilon_X$$

• Measured branching fractions (eg, for  $B_s^0$ ):

$$\mathcal{B}(B_s^0 \to X) = \frac{N_X}{\sigma_b \cdot A \cdot f_s \cdot \epsilon_X}$$

■ Ratio of branching fractions (eg,  $B \to \mu^+\mu^-$ ):

$$\frac{\mathcal{B}(B_S^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_d^0 \to \mu^+ \mu^-)} = \frac{N_{B_S \to \mu^+ \mu^-}}{N_{B_d \to \mu^+ \mu^-}} \cdot \frac{f_d}{f_s}$$

 Need to know hadronization fractions for precision measurements at hadron colliders

# Eur. Phys. J. C (2021) 81:226

#### **Bottom Quark Hadronization Fractions**

• Assumed to be independent of environment,  $p_T(B)$ ...

$$f_u + f_d + f_s + f_{\text{baryon}} = 1$$

• Measured at LEP ( $\sqrt{s} = M_Z$ ) and the Tevatron

| Quantity                |                 | Z decays          | Tevatron          |
|-------------------------|-----------------|-------------------|-------------------|
| $B^+$ or $B^0$ fraction | $f_u = f_d$     | $0.407 \pm 0.007$ | $0.344 \pm 0.021$ |
| $B_s^0$ fraction        | $f_{s}$         | $0.101 \pm 0.008$ | $0.115 \pm 0.013$ |
| b-baryon fraction       | $f_{ m baryon}$ | $0.085 \pm 0.011$ | $0.198 \pm 0.046$ |
| $B_s^0/B^0$ ratio       | $f_s/f_d$       | $0.249 \pm 0.023$ | $0.334 \pm 0.040$ |

- $\sim 2 \sigma$
- Environmental influence is potentially an important systematic effect
  - Could limit precision  $B_s$  branching fraction measurements

#### **Environmental Influence on Hadronization Fractions**

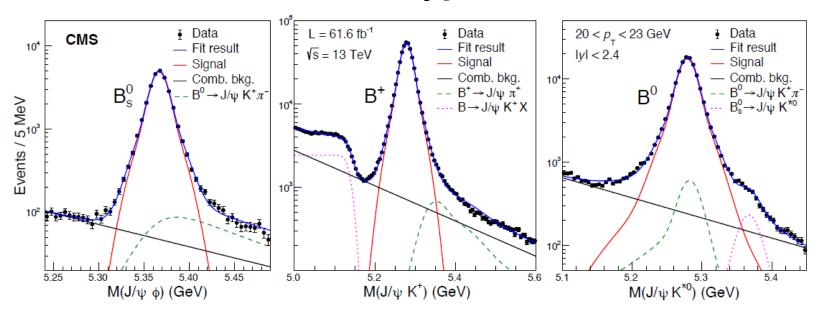
- LHC-b observed significant  $p_T(\Lambda_b)$  dependence
  - Weaker but significant dependence on  $p_T(B_s)$

Inclusive semi-leptonic decays:

$$H_b \to H_c X \mu^- \bar{\nu}_{\mu}$$



$$\frac{f_s}{f_u + f_d}(p_T) = A[p_1 + p_2 \times (p_T - \langle p_T \rangle)]$$


$$p_2 = (-0.91 \pm 0.25) \times 10^{-3} \text{ GeV}^{-1}$$

- pp collisions at  $\sqrt{s} = 13$  TeV, 61.6 fb<sup>-1</sup> collected in 2018
- Di-muon + track trigger:
  - $p_T(\mu^{\pm}) > 4 \text{ GeV}, |\eta| < 2.5, m(\mu^{+}\mu^{-}) \text{ within } 2.9 3.3 \text{ GeV}$
  - $p_T(track) > 1.2 \text{ GeV}, |\eta| < 2.4$
  - Displaced vertex requirement
- Offline reconstruction:
  - $B^+ \to J/\psi K^+$ ■  $B^0 \to J/\psi K^{*0}, K^{*0} \to K^-\pi^+$ ■  $B_S^0 \to J/\psi \phi, \phi \to K^+K^-$

Vertex fit quality cuts  $12 < p_T(B) < 70 \text{ GeV}$ |y| < 2.4

arXiv:2212.02309

Example:  $20 < p_T < 23 \text{ GeV}$ 



#### Determined from fit:

- Shape of combinatorial background
- Shape of  $B^+ \to J/\psi K^+ X$  component

#### Constrained from Monte Carlo:

- Cabibbo suppressed decay fraction
- Swapped kaon/pion mass assignments

In principle,

$$\frac{f_s}{f_u} = \frac{N_{B_s}}{N_{B^+}} \cdot \frac{\epsilon_{B^+}}{\epsilon_{B_s}} \cdot \frac{\mathcal{B}(B^+ \to J/\psi K^+)}{\mathcal{B}(B_s \to J/\psi \phi) \mathcal{B}(\phi \to K^+ K^-)}$$

- Most branching fractions are measured precisely
- But  $\mathcal{B}(B_s \to J/\psi \phi)$  is dominated by an LHC-b analysis that measures the  $p_T$  dependence of  $f_s/f_d$ 
  - Phys. Rev. D 104, 032005 (August 2021)
- CMS chooses to report measurements of

$$\mathcal{R}_{d} = \frac{f_{d}}{f_{u}} \cdot \frac{\mathcal{B}(B^{0} \to J/\psi K^{*0})\mathcal{B}(K^{*0} \to K^{-}\pi^{+})}{\mathcal{B}(B^{+} \to J/\psi K^{+})}$$

$$\mathcal{R}_{s} = \frac{f_{s}}{f_{u}} \cdot \frac{\mathcal{B}(B_{s}^{0} \to J/\psi \phi)\mathcal{B}(\phi \to K^{+}K^{-})}{\mathcal{B}(B^{+} \to J/\psi K^{+})}$$



- Matches LHC-b result at low  $p_T$
- No significant dependence on rapidity



- Branching fractions for B<sup>0</sup> and B<sup>+</sup> are known precisely
- Compatible with unity  $f_d/f_u = 1.015 \pm 0.051$
- $\mathcal{R}_{S} = 0.1102 \pm 0.0027$  for  $p_{T} > 18$  GeV

# Alternative CMS Analysis of $f_s/f_u$

- The ratio  $f_s/f_u$  could be determined if branching fractions were known precisely
- Reliable theoretical prediction for the ratio

$$\frac{\mathcal{B}(B_s^0 \to D_s^+ \pi^-)}{\mathcal{B}(B^0 \to D^- h^+)} \sim \frac{\tau_{B_s}}{\tau_{B_d}} \left| \frac{V_{ud}}{V_{us}} \right|^2 \left( \frac{f_{\pi}}{f_K} \right)^2 \left[ \frac{F_0^{(s)}(m_{\pi}^2)}{F_0^{(d)}(m_K^2)} \right]^2 \left| \frac{a_1(D_s \pi)}{a_1(D_d K)} \right|^2$$

Phys. Rev. D 82, 034038 (2010)

- Motivates reconstructing these decays in pp collisions
- The challenge is collecting these using a suitable trigger

# **B** Parking at CMS

- Single muon trigger:
  - Minimum  $p_T$  requirement
  - Minimum signed impact parameter significance
  - Thresholds and pre-scales adjusted based on instantaneous luminosity to level the trigger rate
  - High level trigger rate < 5 kHz</p>
- 10 billion events saved to tape and reconstructed when computing resources become available
- Opposite side jets provide an unbiased sample of bdecays
  - 60-90% purity estimated by reconstructing  $B \to D^{*+} \mu^- \bar{\nu}_{\mu}$
- Now possible to reconstruct fully hadronic B decays

# **Exotic Heavy Flavor Decaying to** $J/\psi J/\psi$

• In 2020, LHCb reported observation of X(6900) in the  $J/\psi J/\psi$  mass spectrum





- The nature of the state remains unclear
- Description of the line shape is challenging
  - Multiple resonances near threshold?
  - Interference?

# **Reconstruction** of $J/\psi J/\psi$ at CMS

#### Data sample:

■ 135 fb<sup>-1</sup> (2016 – 2018),  $\sqrt{s}$  = 13 TeV

#### Level 1 trigger:

- Three muon candidates
- Opposite charge pair with  $p_T^{(1)} > 5 \text{ GeV}$ ,  $p_T^{(2)} > 3 \text{ GeV}$ , m < 9 GeV

#### High Level Trigger:

- $|\eta(\mu)| < 2.5$
- $\mu^+\mu^-$  pair from a common vertex with 2.95 < m < 3.25 GeV

#### Offline selection:

- Four muons with  $p_T > 2$  GeV,  $|\eta| < 2.4$
- $p_T(\mu^+\mu^-) > 3.5 \text{ GeV}, 2.95 < m < 3.25 \text{ GeV}$
- Mass constrained fit to a common vertex

CMS BPH-21-003

### **Reconstruction of** $J/\psi J/\psi$ **at CMS**



Observes X(6900) resonance and other structures

#### **Description of Resonant** $J/\psi J/\psi$ **Structures**

#### Background description:

- Non-resonant single/double parton scattering (PYTHIA)
  - Dominates at low/high mass
- Feed down from other excited states (HELAC-ONIA, CASCADE)
- Parametrized by empirical functions
  - Threshold + polynomial + exponential

#### Signal description:

Relativistic Breit-Wigner convoluted with resolution function

|              | BW1                  | BW2                 | BW3                 |
|--------------|----------------------|---------------------|---------------------|
| m (MeV)      | $6552 \pm 10 \pm 12$ | $6927 \pm 9 \pm 5$  | $7287 \pm 19 \pm 5$ |
| Γ (MeV)      | $124 \pm 29 \pm 34$  | $122 \pm 22 \pm 19$ | $95 \pm 46 \pm 20$  |
| N            | $474 \pm 113$        | 492 ± 75            | $156 \pm 56$        |
| Significance | $6.5\sigma$          | $9.4\sigma$         | $4.1\sigma$         |

#### **Resonance Fit Models**

- LHCb considered alternative signal models
  - Threshold enhancement modeled by additional Breit-Wigner functions
  - Dip at 6700 MeV modeled by a Breit-Wigner and destructive interference with NRSPS background



CMS observes generally poor fit quality

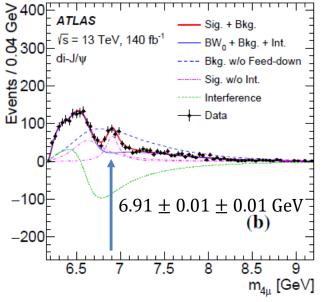
#### **Resonance Fit Models**

 CMS observes good description using interfering Breit-Wigner signal functions:

$$f(x) \sim \left| r_1 e^{i\phi_1} BW_1(x) + BW_2(x) + r_3 e^{i\phi_3} BW_3(x) \right|^2$$



#### **Recent Results from ATLAS**


#### Background model:

- Single Parton Scattering constrained by  $\Delta R > 0.25$  control region
- Non-prompt  $J/\psi$  background constrained by  $\chi^2_{4\mu}$  or  $L^{di-\mu}_{xy}$  control regions
- Feed-down from  $J/\psi \psi(2S)$  decays

#### Signal models:

- Sig A: Three interfering Breit-Wigner functions
- Sig B: Two Breit-Wigner functions, one interferes with SPS background





arXiv:2304.0890

#### Pure prompt production: Nonprompt contributions: $\sigma_{\rm SPS}^{1\,{\rm p}\,2\,{\rm np}}$ $\sigma_{\rm SPS}^{\rm 2\,p\,1\,np}$ SPS: $\sigma_{\rm DPS}^{\rm 3\,np}$ $\sigma_{\mathrm{DPS}}^{\mathrm{2\,p\,1\,np}}$ $\sigma_{\mathrm{DPS}}^{\mathrm{3\,p}}$ DPS: $\sigma_{\mathrm{DPS}}^{\mathrm{1p2np}}$ $\int J/\psi$ $J/\psi$ $\sigma_{\rm TPS}^{\rm 2\,p\,1\,np}$ TPS: 0000000 $\int J/\psi$ $J/\psi$

Assumption:

$$\sigma_{\text{DPS}}^{pp \to \psi_1 \psi_2 + X} = \left(\frac{m}{2}\right) \frac{\sigma_{\text{SPS}}^{pp \to \psi_1 + X} \sigma_{\text{SPS}}^{pp \to \psi_2 + X}}{\sigma_{\text{eff,DPS}}}$$

$$\sigma_{\text{TPS}}^{pp \to \psi_1 \psi_2 \psi_3 + X} = \left(\frac{m}{3!}\right) \frac{\sigma_{\text{SPS}}^{pp \to \psi_1 + X} \sigma_{\text{SPS}}^{pp \to \psi_2 + X} \sigma_{\text{SPS}}^{pp \to \psi_3 + X}}{\sigma_{\text{eff,TPS}}^2}$$

$$\sigma_{\text{eff,DPS}}^2 = (0.82 \pm 0.11) \sigma_{\text{eff,TPS}}$$

- Prompt and non-prompt SPS cross sections calculated using HELAC-ONIA and MADGRAPH5 aMC@NLO
- Measurement of triple- $J/\psi$  cross section provides a new measurement of  $\sigma_{\rm eff,DPS}$ .







$$N_{sig}^{3J/\psi} = 5.0_{-1.9}^{+2.6}$$
  
 $\sigma_{\rm eff,DPS} = 2.7_{-1.0}^{+1.4} (\exp)_{-1.0}^{+1.5} ({\rm theo}) {\rm ~mb}$ 



Smaller values of  $\sigma_{\rm eff,DPS}$  for quarkonia compared to harder processes suggest x dependence

# **Summary**

- Bottom quark hadronization fractions
  - CMS observes  $p_T$  dependence in  $f_s/f_u$  in agreement with LHCb
  - No variation with rapidity observed
  - Measures  $f_d/f_u$  compatible with unity as is typically assumed
  - Reduced dependence on unknown branching fractions may be possible with fully hadronic B decays
- Exotic charm states decaying to  $J/\psi J/\psi$ 
  - CMS confirms resonance parameters of X(6900) state
    - Also observed by ATLAS
  - Observation of additional resonances X(6600) and X(7300)
  - Resonance parameters appear to be stable
  - Spectrum is described well by interfering Breit-Wigner functions
- Triple  $J/\psi$  Production
  - New measurement of  $\sigma_{\rm eff,DPS}$  in low x process

# **Backup Material**

#### **Recent Results from ATLAS**

- The X(6900) is above the  $J/\psi \ \psi(2S)$  threshold
- Signal near threshold includes all resonances observed in  $J/\psi$   $J/\psi$  final state





#### Calculated SPS cross sections

| SPS single-J/ $\psi$ production |                                | SPS double-J/ $\psi$ production |                              | SPS triple-J/ $\psi$ production |                           |                                |                              |                            |
|---------------------------------|--------------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------|--------------------------------|------------------------------|----------------------------|
| HO(DATA)                        | mg5nlo+py8                     | HO(NLO*)                        | HO(LO)+PY8                   | mg5nlo+py8                      | HO(LO)                    | HO(LO)+PY8                     | HO(LO)+PY8                   | mg5nlo+py8                 |
| $\sigma_{ m SPS}^{ m 1p}$       | $\sigma_{ m SPS}^{ m 1np}$     | $\sigma_{ m SPS}^{ m 2p}$       | $\sigma_{ m SPS}^{ m 1p1np}$ | $\sigma_{ m SPS}^{ m 2np}$      | $\sigma_{ m SPS}^{ m 3p}$ | $\sigma_{ m SPS}^{ m 2p1np}$   | $\sigma_{ m SPS}^{ m 1p2np}$ | $\sigma_{ m SPS}^{ m 3np}$ |
| $570 \pm 57 \mathrm{nb}$        | $600^{+130}_{-220}\mathrm{nb}$ | $40^{+80}_{-26}\mathrm{pb}$     | $24^{+35}_{-16}\mathrm{fb}$  | $430^{+95}_{-130}\mathrm{pb}$   | < 5 ab                    | $5.2^{+9.6}_{-3.3}\mathrm{fb}$ | $14^{+17}_{-8}$ ab           | $12\pm4\mathrm{fb}$        |

# Expected contributions to $N_{\mathrm{tot}}^{3J/\psi}$

| Process:                                        | 3 prompt | 2 prompt+1 nonprompt | 1 prompt+2 nonprompt | 3 nonprompt | Total |
|-------------------------------------------------|----------|----------------------|----------------------|-------------|-------|
| $\sigma_{\rm SPS}^{3{\rm J}/\psi}$ (fb)         | < 0.005  | 5.7                  | 0.014                | 12          | 18    |
| $N_{ m SPS}^{3{ m J}/\psi}$                     | 0.0      | 0.10                 | 0.0                  | 0.22        | 0.32  |
| $\sigma_{\mathrm{DPS}}^{\mathrm{3J/\psi}}$ (fb) | 8.4      | 8.9                  | 90                   | 95          | 202   |
| $N_{ m DPS}^{3{ m J}/\psi}$                     | 0.15     | 0.16                 | 1.65                 | 1.75        | 3.7   |
| $\sigma_{\mathrm{TPS}}^{\mathrm{3J/\psi}}$ (fb) | 6.1      | 19.4                 | 20.4                 | 7.2         | 53    |
| $N_{	ext{TPS}}^{3	ext{J}/\psi}$                 | 0.11     | 0.36                 | 0.38                 | 0.13        | 1.0   |
| $\sigma_{\rm tot}^{3{\rm J}/\psi}$ (fb)         | 15       | 34                   | 110                  | 114         | 272   |
| $N_{ m tot}^{3{ m J}/\psi}$                     | 0.3      | 0.6                  | 2.0                  | 2.1         | 5.0   |

# **Acknowledgements**

Support provided by DOE project award DE-SC0007884