### Higgs Boson Physics: An Update

### Ian Lewis University of Kansas

# Outline

- Introduction.
- Precision Higgs measurements.
  - Current and future measurements
- Di-Scalar Production
  - Resonant and non-resonant.
- More exotic signatures:
  - Dijets from Higgs doublets
  - Multi-photon Higgs decays
- Conclude

# Introduction

- Higgs nearly 11 years old now.
- Higgs is central to the Standard Model.
  - Source of electroweak symmetry breaking.
  - The source of mass for gauge boson and fermions.
- Last parameter needed in the Standard Model was the Higgs mass.
  - The SM is now completely predictive.
  - Opportunity to test structure of the Standard Model.
  - Opportunity to look for deviations from the Standard Model.
- Try to convince you that still many interesting things to search for in Higgs physics.
  - Understanding how electroweak symmetry is broken, i.e. measure the Higgs potential.
  - Connections to baryogenesis.

Feynman Diagrams from ATLAS, Nature, arXiv:2207.00092

### **Completely Predictive**

 Once we know Higgs mass, can calculate production and decay rates to high precision..





 $\rightarrow$  H (N3LO QCD + NLO EW)

Phenomenology Symposium May 9, 2023

Higgs Boson Update Ian Lewis (University of Kansas) 4





- At  $m_h = 125 \, GeV$ , many decay channels are open.
  - At higher mass, harder to measure couplings to fermions
  - At lower mass, harder to measure couplings to gauge bosons.
  - Quite lucky that so many decay channels are open so that we can thoroughly probe the couplings of the Higgs with SM particles.

#### CMS, Nature, arXiv:2207.00043 ATLAS, Nature, arXiv:2207.00092

Where We're At



 Higgs precision shown in terms of signal strengths.

$$\mu_i^f = \frac{\sigma_{\exp}(i \rightarrow h \rightarrow f)}{\sigma_{SM}(i \rightarrow h \rightarrow f)}$$

- Most measurements agree well with the SM.
- Already measuring many rates to order 10% accuracy.



Where We're At

ATLAS, Nature, arXiv:2207.00092



- Higgs boson associated with the source of EW symmetry breaking.
  - Higgs couplings should be proportional to masses (or squared masses)
  - Have verified that over many orders of magnitude in couplings and mass.



- Much of the future collider program is focused on measuring the Higgs to greater precision.
- Different colliders have different capabilities.

# Where We're Going



de Blas et al., 2206.08326

- Much of the future collider program is focused on measuring the Higgs to greater precision.
- Different colliders have different capabilities.

### Couplings to Second Generation $\kappa_i = \frac{g_i}{\kappa_i}$

- Have measured couplings to third generation fermions and gauge bosons.
- Just beginning to be sensitive to couplings to second generation fermions:
  - ATLAS:  $\mu$ =1.2±0.6 atlas, PLB 812 (2021) 135980
  - CMS:  $\mu = 1.2 \pm 0.4$  CMS, JHEP 01 (2021) 148
- Bounds on charm quark Yukawa
  - Search for  $Vh, h \rightarrow c \overline{c}$
  - ATLAS:  $|\kappa_c| < 8.5$  atlas, EPJC 82 (2022) 717
  - CMS:  $1.1 < |\kappa_c| < 5.5$  CMS, 2205.05550
- Recent new proposals to measure charm Yukawa:
  - $h \rightarrow c \overline{c} + J/\psi$  Han, Leibovich, Ma, Tan JHEP 08 (2022) 073
  - $h \rightarrow c \overline{c} + \eta_c$

 $g_{iSM}$ 

Phenomenology Symposium May 9, 2023 Higgs Boson Update Ian Lewis (University of Kansas)

#### ATLAS and CMS Snowmass White Paper



### Effective Field Theory Interpretation

- If we see a deviation, can we map it onto a model?
- Useful to have a generic theoretical framework to understand: Effective Field Theories
- Assume all new physics too heavy to be produced directly.
- Generically obtain a tower of operators:

$$L = L_{SM} + \sum_{k} \frac{C_{1,k}}{\Lambda} O_{1,k} + \sum_{k} \frac{C_{2,k}}{\Lambda^2} O_{2,k} \cdots$$

Energy

- Standard Model Effective Field Theory parameterizes deviations away from SM predictions.
- Different UV models should have different predictions for relations among Wilson coefficients.
  - The hope would be to see an anomaly and measure the relationships between the Wilson coefficients.
  - Patterns of values of Wilson coefficients may give hints to underlying physics.

Phenomenology Symposium May 9, 2023 Higgs Boson Update Ian Lewis (University of Kansas)  $\equiv$  New Physics  $\gtrsim \Lambda$ 

 $\equiv SM \lesssim v$ 

LHC Energy  $\sim 13 \,\mathrm{TeV}$ 

# **Interpreting Precision Higgs**

2HDM

Singlet Model



• Trajectories in Wilson coefficient space for specific UV completions.

Dawson, Homiller, Lane, PRD 102 (2020) 055012

### EFTS and Underlying Models

- Comparison of exact 2HDM to 2HDM matched onto SMEFT.
- Precision Higgs fits.
- Dimension-6 terms come from fermion couplings.
  - For Type-I, Dimension-6 suppressed by  $1/\tan\beta$

Bélusca et al EPJC77 (2017) 176

• See Matt Sullivan's talk.



Dawson, Fontes, Homiller, Sullivan, PRD106 (2022) 055012

# **Beyond Single Higgs**

- All precision measurements look Standard Model like so far.
- It appears like the observed scalar is related to the mass generating mechanism for the SM fermions and gauge bosons.
- We still have not determined precisely how the Higgs obtains a vacuum expectation value.
- The vev comes from the shape of the scalar potential:

$$V(\Phi) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} \supset \frac{1}{2} m_{h}^{2} h^{2} + \frac{\lambda_{hhh}}{3!} h^{3} + \frac{\lambda_{hhhh}}{4!} h^{4}$$

• In the long run, need to measure Higgs trilinear (and maybe quartic?) couplings to get a handle on the mechanism that generates the vev.



#### Double Higgs in the SM



• SM scalar potential contains two parameters, completely determined by the mass and vev.

collider

• Search for Higgs pair production to directly measure shape of potential:



| 100-200% | 50%                                                                                                                                                                           | 50%                                                                                                                                                                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 49%      | _                                                                                                                                                                             | 49%                                                                                                                                                                                                 |
| 38%      | 20%                                                                                                                                                                           | 20%                                                                                                                                                                                                 |
| 50%      | _                                                                                                                                                                             | 50%                                                                                                                                                                                                 |
| 49%      | 36%                                                                                                                                                                           | 29%                                                                                                                                                                                                 |
| 49%      | 9%                                                                                                                                                                            | 9%                                                                                                                                                                                                  |
| 33%      | _                                                                                                                                                                             | 33%                                                                                                                                                                                                 |
| 24%      | _                                                                                                                                                                             | 24%                                                                                                                                                                                                 |
| -        | 3.4 - 7.8%                                                                                                                                                                    | 3.4 - 7.8%                                                                                                                                                                                          |
| -        | 15-30%                                                                                                                                                                        | 15-30%                                                                                                                                                                                              |
| -        | 4%                                                                                                                                                                            | 4%                                                                                                                                                                                                  |
|          | $   \begin{array}{r}     100-200\% \\     49\% \\     38\% \\     50\% \\     49\% \\     49\% \\     33\% \\     24\% \\     - \\     - \\     - \\     - \\   \end{array} $ | $\begin{array}{c ccccc} 100-200\% & 50\% \\ \hline 49\% & - \\ 38\% & 20\% \\ 50\% & - \\ 49\% & 36\% \\ 49\% & 9\% \\ 33\% & - \\ 24\% & - \\ - & 3.4-7.8\% \\ - & 15-30\% \\ - & 4\% \end{array}$ |

Indirect-h

hh

combined

ATL-PHYS-PUB-2022-005

Snowmass Higgs Topical Group Report, arXiv:2209.07510

Phenomenology Symposium May 9, 2023

## Scalar Extensions

- Scalar Extensions:
  - Adding new scalars will alter the Higgs potential.
  - The Higgs is unique in the Standard Model in that you cannot forbid the Higgs portal:

 $|\Phi|^2 |S|^2$ 

- Scalar extensions are simple extensions of the SM that can provide a lot of interesting phenomenology.
- They can also help solve many particle physics problems.
- With new scalar, have more scalar trilinear and quartic couplings.
- New production modes of di-scalar final states.



### Additional trilinears

• Simplest extension: Real gauge singlet scalar

$$V(\Phi, S) = -\mu^{2} |\Phi|^{2} + \lambda |\Phi|^{4} + \frac{1}{2}a_{1}|\Phi|^{2}S + \frac{1}{2}a_{2}|\Phi|^{2}S^{2} + b_{1}S + \frac{1}{2}b_{2}S^{2} + \frac{1}{3}b_{3}S^{3} + \frac{1}{4}b_{4}S^{4}$$

• After EW symmetry breaking and mixing, these couplings will give rise to additional trilinear couplings between mass eigenstates:



- Need to search for more scalar production than just di-Higgs to map out the full potential.
- Can get interesting new resonant decays

### **Resonant Di-Higgs Production**



IML, Sullivan, PRD96 (2017) 035037

- Can still get a factor of a few enhancement for smaller resonant masses.
- For a Z<sub>2</sub> symmetric real singlet see also Robens, arXiv:2209.15544

### **Exotic Higgs Decays**

#### Carena et al, arXiv:2203.08206



- If  $m_1 > 2 m_2$  can have decays  $h_1 \rightarrow 2 h_2$
- Shaded regions: have a strong first order electroweak phase transition.
  - LEP constrains mixing angle to be quite small.
  - *a*<sub>1</sub> gives mass mixing, so must be small.
  - Only parameter left to change potential is *a*<sub>2</sub>
  - Need non-zero a<sub>2</sub> for a strong first order electroweak phase transition.
  - $a_2$  is also the coupling that gives  $h_1 \rightarrow 2 h_2$
  - Need a non-zero branching ratio.
  - Benchmark scenario to search for.
- See also Wang et al, arXiv:2203.10184

Kozaczuk, Ramsey-Musolf, Shelton, PRD101 (2020) 115035

## Non-Resonant Di-Scalar Production



- In general, different di-scalar production sensitive to different trilinear couplings, i.e. different terms in the scalar potential.
  - Should search for all
- In particular, in zero mixing limit, only  $h_2h_2$  production through s-channel  $h_1$  give new physics contributions.



### Collider Searches at HL-LHC

- For larger mixing angle, h<sub>1</sub>h<sub>1</sub> and h<sub>1</sub>h<sub>2</sub> pair production can add information:
  - $\begin{array}{l} h_1 h_1 + h_1 h_2 \rightarrow 2W + 2b \rightarrow 2l \quad 2v \quad 2b \\ m_2 = 170 \text{ GeV}, \sin \theta = 0.2 \end{array}$
- $h_2h_2$  also important:  $h_2h_2 \rightarrow 4W \rightarrow (2j)(2l^{\pm \cdot})l'^{\pm \cdot}(3\nu) \quad l \neq l'$
- At smaller mixing angle,  $h_2h_2$  is more important.
- The point:
  - It is important to search for all Di-Scalar channels.
  - They contain complementary information about the potential.
  - We need to measure all trilinears in the potential, not just the Higgs trilinear.
- Dashed lines are for constant deviations from SM trilinear Higgs coupling.
  - Can have sizable deviations.
  - Current LHC projections:

$$\frac{\delta\lambda_{111}}{\lambda_{111}} \sim 50\%$$

6



10

8

Higgs Boson Update

Ian Lewis (University of Kansas)

-2

21

 $\lambda_{221}/\text{vev}_{EW}$ 

10

### **Di-Scalar Resonant Production**

- Advocated for searching for generic non-resonant di-scalar production:  $\begin{array}{cc} h_1 h_1 & h_1 h_2 & h_2 h_2 \end{array}$
- If you add more than one additional scalar, can have resonant production:

$$\mathbf{h}_2 \rightarrow \mathbf{h}_1 \mathbf{h}_1$$
  $\mathbf{h}_2 \rightarrow \mathbf{h}_1 \mathbf{h}_3$   $\mathbf{h}_2 \rightarrow \mathbf{h}_3 \mathbf{h}_3$ 

- Consider complex scalar extension with no additional symmetry (identical to two real scalar extension with no additional symmetry)
  - Have three real scalars: SM h, and two new scalars  $\mathsf{S}_0$  and A.
  - Again, new scalars only appears in the potential and inherit couplings from mixing with SM Higgs.
  - Generic mixing:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} \cos \theta_1 & -\sin \theta_1 & 0 \\ \sin \theta_1 & \cos \theta_1 & \sin \theta_2 \\ \sin \theta_1 \sin \theta_2 & \cos \theta_1 \sin \theta_2 & -1 \end{pmatrix} \begin{pmatrix} h \\ S_0 \\ A \end{pmatrix} + O(\sin^2 \theta_2)$$

- In limit  $\theta_{_{\!2}}\! \! \rightarrow \! 0$  ,  $h_{_{\!3}}$  has very small couplings to SM fermions and gauge bosons.
- The production of  $h_3$  is mainly through decays of heavier scalar  $h_2$ : may be the only way to discover.
- Could discover two scalars at once.

### **Di-Scalar Resonant Production**



Adhikari, Lane, IML, Sullivan, arXiv:2203.07455

- We considered 130 GeV <  $m_3$  < 270 GeV
- Interest to search for these final states.

```
CMS arXiv:2204.12413; CMS JHEP09 (2021) 57
```



### Resonant Di-Scalar Production: Two Real Singlet Model



• Two real singlet model with each model with two Z<sub>2</sub>s: Robens, Stefaniak, Wittbrodt EPJC80 (2020) 151

 $-Z_2: S \rightarrow -S, X \rightarrow X, SM \rightarrow SM, Z_2': S \rightarrow S, X \rightarrow -X, SM \rightarrow SM$ 

- Different mass ordering m<sub>1</sub><m<sub>2</sub><m<sub>3</sub>
- In models with more than one additional scalar, is possible to pair produce Di-Higgs, two new scalars, or asymmetrically with a new scalar+Higgs: Complex 2HDM, Real 2HDM+Singlet, etc.

Dawson, Sullivan, PRD97 (2018) 015022; Adhikari, Lane, **IML**, Sullivan, arXiv:2203.07455; Abouabid et al arXiv:2112.12515; Basler, Dawson, Englert, Mühlleitner, PRD101 (2020) 015019; etc.

# **Two Higgs Doublet Models**

### Two Higgs Doublet Models

- Introduce a second Higgs doublet:
  - $\Phi_1$ ,  $\Phi_2$
- Typically make one Higgs doublet odd under a Z<sub>2</sub> parity:  $\Phi_1 \rightarrow -\Phi_1$

Glashow, Weinberg PRD15 (1977) 1958; Paschos PRD15 (1977) 1966

- Right handed fermions assigned a parity to forbid couplings to one type of Higgs doublet.
- Mass and Yukawa matrices are proportional, so they are simultaneously diagonalizable and tree level FCNCs are avoided.
- The types and their patterns of couplings:

| Model           | $u_R^i$  | $d_R^i$  | $e_R^i$  |
|-----------------|----------|----------|----------|
| Type I          | $\Phi_2$ | $\Phi_2$ | $\Phi_2$ |
| Type II         | $\Phi_2$ | $\Phi_1$ | $\Phi_1$ |
| Lepton-specific | $\Phi_2$ | $\Phi_2$ | $\Phi_1$ |
| Flipped         | $\Phi_2$ | $\Phi_1$ | $\Phi_2$ |

Branco, Ferreira, Lavoura, Rebelo, Sher Phys. Rept. 516 (2012) 1

### **Beyond Typical 2HDM**

- Usually assume  $Z_2$  in 2HDM to avoid tree level flavor changing neutral currents., however, Yukawas can have different structures.
- For example Spontaneous Flavor Violation. Egana-Ugrinovic, Homiller, Meade PRL 123 (2019) 031802, PRD100 (2019) 115041, PRD 103(2021) 115005
- In the Higgs basis:

$$|\mathbf{H}_{1}^{\dagger}\mathbf{H}_{1}\rangle = \frac{\mathbf{v}^{2}}{2}, \langle \mathbf{H}_{2}^{\dagger}\mathbf{H}_{2}\rangle = 0$$

-  $H_1$  couples according the SM Yukawas:

$$\lambda_1^{\mathrm{u}} = \mathbf{V}^{\mathrm{T}} \mathbf{Y}^{\mathrm{u}}, \quad \lambda_1^{\mathrm{d}} = \mathbf{Y}^{\mathrm{d}}, \quad \lambda_1^{\mathrm{l}} = \mathbf{Y}^{\mathrm{l}}$$

- Where Y are diagonal Yukawa matrices and V is the CKM matrix.
- H<sub>2</sub> either couples according to SM Yukawas or diagonal:
  - Up type Spontaneous Flavor Violation:

$$\lambda_2^{u} = \xi V^T Y^{u}$$
  $\lambda_2^{d} = K^{d} = \operatorname{diag}(\kappa_{d}, \kappa_{s}, \kappa_{b})$   $\lambda_2^{l} = \xi^{l} Y^{l}$ 

• Down Type Spontaneous Flavor Violation:

neous Flavor Violation:

- $\lambda_2^{\mathrm{u}} = \xi \mathrm{K}^{\mathrm{u}} = \mathrm{diag}(\kappa_{\mathrm{u}}, \kappa_{\mathrm{c}}, \kappa_{\mathrm{t}}) \qquad \lambda_2^{\mathrm{d}} = \mathrm{Y}^{\mathrm{d}} \qquad \lambda_2^{\mathrm{l}} = \xi^{\mathrm{l}} \mathrm{Y}^{\mathrm{l}}$
- Leads to new types of signatures: dijet resonance.
- Different ansatzes to avoid FCNCs without parity have been considered:

Cheng, Sher PRD35 (1987) 3484, Babu, Jana JHEP02 (2019) 193

#### Flavor Constraints in SFV



Egana-Ugrinovic, Homiller, Meade PRD 103 (2021) 115005

- Can avoid many flavor constraints with this ansatz.
- For flavor constraints at higher masses see DavoudiasI, IML, Sullivan, PRD104 (2021) 015024

### **Dijet Signal**



Egana-Ugrinovic, Homiller, Meade PRD 103 (2021) 115005

• New scalar can have be produced via quark anti-quark annihilation and decay into dijets:

$$q^{(1)}\overline{q}^{(2)} \rightarrow H/A/H^{+} \rightarrow q^{(3)}\overline{q}^{(4)}$$

• What can we do with this?

Phenomenology Symposium May 9, 2023

### **Baryogenesis From Three Higgs Doublets**

Davoudiasl, **IML**, Sullivan, PRD101 (2020) 055010, PRD104 (2021) 015024

• Asymmetry decay of a heavy doublet into leptons can create a lepton asymmetry that becomes a baryon asymmetry:



• Asymmetry parameter that governs the magnitude of the baryon asymmetry generated:

$$\varepsilon_{a} = \frac{1}{8\pi} \frac{(m_{b}^{2} - m_{a}^{2})m_{a}^{2}}{(m_{b}^{2} - m_{a}^{2})^{2} + m_{b}^{2}\Gamma_{b}^{2}} \frac{\sum_{f=q} N_{c,f} \operatorname{Im}\left(\operatorname{Tr}_{\nu}^{ba} \operatorname{Tr}_{f}^{ba*}\right)}{\sum_{f=q} N_{c,f} \operatorname{Tr}_{f}^{aa}} \quad \operatorname{Tr}_{f}^{ba} = \operatorname{Tr}[\lambda_{f}^{b\dagger} \lambda_{f}^{a}].$$

- Need two additional Higgs doublets in order to overcome small SM Yukawas Dirac neutrinos.
  - The Higgs Troika: three Higgs doublet model.
  - (For a 2HDM that relies on highly degenerate neutrinos see Hambye, Teresi, PRL117 (2016) 091801, PRD96 (2017) 015031)
- This model can have large couplings between the extra Higgs doublets and SM light quarks.
  - Use quarks inside loop.
  - Two flavor structures were studied.
  - One was spontaneous flavor violation where the Yukawas are diagonal or proportional to SM Yukawas.
- Hence, at colliders can have large rates via s-channel production through light quark/anti-quark annihilation:

$$q'\overline{q} \rightarrow H, A, H^{\pm}$$

Phenomenology Symposium May 9, 2023

### Baryogenesis from Higgs Decays

Davoudiasl, **IML**, Sullivan, PRD101 (2020) 055010, PRD104 (2021) 015024



- All else being equal, asymmetry prefers a degeneracy in masses. It is maximized when  $\frac{m_a}{m_b} = \pm \frac{\Gamma_b}{2m_b}$
- Depending on couplings can have TeV doublets that generate the baryon asymmetry.
- Heavy Higgs up-quark couplings proportional to SM Yukawas with proportionality constant  $~\xi~$
- $\kappa_d$ ,  $\kappa_s$ ,  $\kappa_b$  are the diagonal couplings between heavy Higgs and down-type quarks

## More Exotica: Multi-Photon Higgs Decays

# Multi-Photon Higgs Signals

- Higgs has very small width:  $\Gamma = 4.1 \, MeV$ 
  - Searches for exotic Higgs decays can be quite sensitive to new physics.
- Many works on di-photon and 4-photon resonances.
- Recently looked at a 6 photon signal.
  - Depending on masses and can get variety of signals.
  - Photon jets:  $\Delta R < 0.04$
  - $\xi$  -jets: 0.04< $\Delta R$ <0.4
  - Isolated:  $0.4 < \Delta R$
- The 4-photon signal is an apparent Landau-Yang violation.
- $\boldsymbol{\xi}$  -jets and six photons particularly difficult.
  - Non-isolated photons not usually consider in analysis.
    - Isolated photons will not reconstruct Higgs mass
  - The six photons are soft and difficult to pass triggers.
  - Many of these events may have passed two and four photon triggers.
- See Sam Lane's talk/slides.

Lee, Lane, IML, arXiv:2305.00013





Phenomenology Symposium May 9, 2023

# Conclusions

- The Higgs is central to the Standard Model.
  - Standard Model now completely predictive.
- Very robust experimental program measuring its properties (with many excellent talks at this conference.)
- Still much to learn, even in the SM
  - Probing the structure of the Higgs potential still an ongoing program.
- Higgs is special in that the Higgs portal is very difficult to forbid.
  - New di-scalar production modes can probe the different couplings in scalar extensions of the SM.
  - New scalar resonances.
- Still interesting signals and models to explore:
  - Higgs tied closely to flavor.
  - TeV scale Higgs decays could explain the matter/anti-matter asymmetry.
  - The theory space of exotic Higgs decays not fully explored: multi-photon Higgs decays.

### Thank You

### 2HDM: Different Heavy Higgs Search Channels



Gonçalves, Kaladharan, Wu PRD105 (2022) 095041

- Color shaded regions are percentage that different search channels cover regions of parameter space that are allowed and provide a strong first order electroweak phase transition at HL-LHC.
- Important to look at many different possible channels.
- Including searches for pp  $\rightarrow$  Z H (A)  $\rightarrow$  Z t t increases overlap region in Type-I, but overall coverage is the same. Goncalves, Kaladharan, Wu arXiv:2206.08381