

Measurements of Processes Sensitive to Quartic Electroweak Couplings in ATLAS

John McGowan, on behalf of the ATLAS Collaboration

Quartic Electroweak Couplings

- VBS and triboson
 production are sensitive to quartic gauge boson couplings
- Measurements only possible in the LHC era.

ATL-PHYS-PUB-2022-009

Motivation

Pheno 2023

arXiv:1309.7890

- Quartic gauge boson self interaction completely determined by the electroweak SM
- Powerful probe for new physics!

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{d>4} \sum_{i} rac{ ilde{c}_{i}}{\Lambda^{d-4}} \mathcal{O}_{i}$$

	WWWW	WWZZ	$WW\gamma Z$	$WW\gamma\gamma$	ZZZZ	$ZZZ\gamma$	$ZZ\gamma\gamma$	$Z\gamma\gamma\gamma$	$\gamma\gamma\gamma\gamma$
$\mathcal{O}_{S,0},\mathcal{O}_{S,1}$	✓	✓			✓				
$\mathcal{O}_{M,0},\mathcal{O}_{M,1},\!\mathcal{O}_{M,6},\!\mathcal{O}_{M,7}$	✓	✓	✓	✓	✓	✓	✓		
$O_{M,2}$, $O_{M,3}$, $O_{M,4}$, $O_{M,5}$		✓	✓	✓	✓	✓	✓		
$\mathcal{O}_{T,0}\;,\!\mathcal{O}_{T,1}\;,\!\mathcal{O}_{T,2}$	✓	✓	✓	✓	✓	✓	✓	✓	✓
$\mathcal{O}_{T,5}$, $\mathcal{O}_{T,6}$, $\mathcal{O}_{T,7}$		✓	✓	✓	✓	√	√	√	✓
$\mathcal{O}_{T,8}\;, \mathcal{O}_{T,9}$					✓	✓	√	√	✓

Overview of Recent Results

- VBS
 - Electroweak Z(vv)γ jj production
 - aQGC Re-interpretation of W[±]Zjj and W[±]W[±]jj
- Triboson Production
 - ο Ζγγ
 - $\circ \qquad W^{\pm} \gamma \gamma$
 - \circ W[±]Z γ

Electroweak $Z(\mathbf{v}\mathbf{v})\gamma$ jj Production

- E_τ^γ > 150 GeV, MET > 120 GeV
- Signal modelled with Madgraph@LO with scale variations @NLO from VBFNLO
- QCD Backgrounds constrained in data CRs
- MET and mis-ID γ from data-driven estimates
- Observed (expected) significance: $3.2 \sigma (3.7\sigma)$
- 6.3 σ (6.6 σ) in combination with low $E_{\rm T}^{\nu}$ measurement

$$\sigma_{Z\gamma {\rm EWK}}^{\rm pred} = 0.98 \pm 0.02$$
 (stat.) $\pm~0.09$ (scale) $\pm~0.02$ (PDF) fb

$$\sigma_{Z\gamma EWK} = 0.77^{+0.34}_{-0.30} \text{ fb}$$

EFT Interpretation

- Limits on T0, T5, T8, T9, M0, M1,
 M2 dim-8 EFT operator
 coefficients
- Clipping used for unitarized limits: remove anomalous signal at particle level for M_{Z_γ} > E_c

Coefficient	E _c [TeV]	Observed limit [TeV ⁻⁴]	Expected limit [TeV ⁻⁴]
f_{T0}/Λ^4	1.7	$[-8.7, 7.1] \times 10^{-1}$	$[-8.9, 7.3] \times 10^{-1}$
f_{T5}/Λ^4	2.4	$[-3.4, 4.2] \times 10^{-1}$	$[-3.5, 4.3] \times 10^{-1}$
f_{T8}/Λ^4	1.7	$[-5.2, 5.2] \times 10^{-1}$	$[-5.3, 5.3] \times 10^{-1}$
f_{T9}/Λ^4	1.9	$[-7.9, 7.9] \times 10^{-1}$	$[-8.1, 8.1] \times 10^{-1}$
f_{M0}/Λ^4	0.7	$[-1.6, 1.6] \times 10^2$	$[-1.5, 1.5] \times 10^2$
f_{M1}/Λ^4	1.0	$[-1.6, 1.5] \times 10^2$	$[-1.4, 1.4] \times 10^2$
f_{M2}/Λ^4	1.0	$[-3.3, 3.2] \times 10^1$	$[-3.0, 3.0] \times 10^1$

aQGC Re-interpretation of W[±]Zjj and W[±]W[±]ij

- Re-interpretation of W[±]Zjj (Phys. Lett. B 793 (2019) 469) and W[±]W[±]jj (Phys. Rev. Lett. **123**, 161801)
- 1-D and 2-D limits for S0, S1, T0, T1, T2, M0, M1, M7

ATL-PHYS-PUB-2023-002

$Z_{\gamma\gamma}$ Production

ATLAS

- Signal region defined by MII + min $(M_{IIV1}, M_{IIV2}) > 2 M_Z$
- ISR dominated

- Integrated and differential cross sections in M_{\parallel} , $M\gamma\gamma$, $p_{T}^{\parallel\gamma\gamma}$, p_{T}^{\parallel} , $E_{T}^{\gamma 1}$, $E_{T}^{\gamma 2}$ and comparison with NLO predictions from SHERPA 2.2.10 and MadGraph
- Limits on T0, T1, T2, T5, T6, T7, T8, T9 dim-8 EFT operator coefficients

Pheno 2023

Integrated fiducial cross-section [fb]

$W^{\pm}\gamma\gamma$ Production

- First observation!
- 5.6 σ (5.6 σ) observed (exp.)
- Signal process modelled with SHERPA 2.2.10
- Large jet and electron photon mis-ID backgrounds estimated with data driven method.
 - ttγ background normalization fit in CR

$$\sigma_{\text{fid}} = 12.2^{+2.1}_{-2.0} \text{ fb}$$

$$\sigma_{\text{pred}} = 12.02 \pm 0.31 \text{ fb}$$

$W^{\pm}Z\gamma$ Production

- First observation!
- Signal process modelled with SHERPA 2.2.11
- 6.3 σ (5.0 σ) observed (exp.)
- Jet to Photon and lepton mis-ID backgrounds estimated with data driven method.

 $\sigma^{\text{obs}} = 2.01\pm0.30(\text{stat.})\pm0.16(\text{syst.})\text{fb}$

$$\sigma^{\text{pred.}} = 1.50 \pm 0.06 \text{fb}$$

Conclusions

- VBS and Triboson Production are sensitive to Quartic Electroweak couplings.
- Uniquely possible in the LHC Era
- Sensitive to aQGC
- Many new results in ATLAS run 2:
 - Electroweak Z(vv)γ jj production
 - aQGC Re-interpretation of W[±]Zjj and W[±]W[±]jj
 - ο Ζγγ
 - \circ $\mathsf{W}^{\pm}\gamma\gamma$
 - \circ W[±]Z γ
- More to come!

Backup

