Recent results in top quark physics from the ATLAS experiment

Brendon Bullard

on behalf of the ATLAS Collaboration

SLAC National Accelerator Laboratory

Phenomenology Symposium May 8, 2023

Overview of top quark measurements

- * Top quark is most massive SM particle
 - Large coupling to Higgs boson
 - Can couple strongly to new physics
- Run 2 ATLAS dataset of 140 fb⁻¹ gives maximal sensitivity to rare processes
 - Testing forbidden SM phenomena with $t\bar{t}$ production
 - Measure rare SM $t\bar{t}+X$ processes inclusively and differentially
- Presenting latest results from the ATLAS experiment

Flavor Changing Neutral Currents (FCNC)

Searches for BSM physics

Observations of SM final states

Measurements of rare Top+X processes

Reconstruction and systematics

- * Top quark signatures rely on quality reconstruction multiple objects
 - Jets and flavor tagging
 - Muons, electrons (trigger, isolation)
 - Leptonic and hadronic taus
 - Missing energy (from neutrinos)
 - Sometimes photons
- Main systematic uncertainties
 - Luminosity, object reconstruction
 - Theory uncertainties of fixed order calculation (μ_R/μ_F variations)
 - Showering/hadronization modeling (variation of parton shower algorithm, MC parameters)

Event display for dileptonic $t\bar{t}$ candidate recorded by ATLAS

Tests of SM with top quarks

Overview of FCNC

- Flavor changing neutral currents (FCNC)
 forbidden at tree level and suppressed at
 loop level by GIM mechanism in SM
- * Can be probed in many different decays of the top quark!
 - Top decays via FCNC $\sim 10^{-14}$, can be 10^{-7} 10^{-4} in BSM (SUSY, 2HDM)
- * Rates of FCNC top decays can be used to constrain Wilson coefficients in the SMEFT interpretation framework

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{NP}^2} \sum_{k} C_k \mathcal{O}_k$$

All ATLAS measurements are improved since 2018!

SLAC

Search for $u/c + g \rightarrow t$

- * Search for FCNC *ugt* and *cgt* with single-top production instead of decay
 - Distinct single top decay features help discriminate against W+jets and multi-jet backgrounds
- * Trigger on lepton, use BDT-based b-tagging algorithm with 30% efficiency
 - Significantly reduces mis-tag backgrounds
- Neural net discriminants trained to target sea
 (D₁) and valence (D₂) quarks
- * Expected limits improved, but less than expected by scaling 8 TeV result by luminosity and cross section
 - Faster increase in top quark background cross section with \sqrt{s} than for FCNC signal

1 lepton, ≥1 jet, E_T^{miss} > 30 GeV

SR: 1 b-jet @ 30 %, (exactly 1 central jet)

W+jets VR: 1 b-jet @ 60% (veto 30%)

tt **VR:** 2 central jets, 2 b-jet @30%

tq VR: exactly 1 forward jet and 1 central jet

$$\sigma(ugt) \times \mathcal{B}(t \to Wb) \times \mathcal{B}(W \to \ell \nu) < 3.0 \text{ pb}$$

 $\sigma(cgt) \times \mathcal{B}(t \to Wb) \times \mathcal{B}(W \to \ell \nu) < 4.7 \text{ pb}$

Search for $t \rightarrow Zu/Zc$ and $u/c \rightarrow tZ$

- * Search for FCNC uZt and cZt with single-top production **and** decay
 - Biggest improvement over 36 fb⁻¹ analysis
- * Dominant backgrounds from VV+heavy flavor, $t\bar{t}Z$ and tZ
- * Neural networks for S/B discrimination
 - Consider uZt and cZt together in decays, separately for production (u/c from valence/sea quarks)
- ◆ Observed limits on $t \to Zu/Zc$ better by $\frac{1}{2}$ factor 3/2 over 36 fb⁻¹ result
 - Most stringent limits to date!

Select exactly 3 leptons, 1 b-tagged jet with DL1r NN tagger

Results

Observable	Vertex	Coupling	Observed	Expected
	SRs+CRs			
$\mathcal{B}(t \to Zq)$	tZu	LH	6.2×10^{-5}	$4.9^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZu	RH	6.6×10^{-5}	$5.1^{+2.1}_{-1.4} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	LH	13×10^{-5}	$11^{+5}_{-3} \times 10^{-5}$
$\mathcal{B}(t \to Zq)$	tZc	RH	12×10^{-5}	$10^{+4}_{-3} \times 10^{-5}$
$ C_{uW}^{(13)*} $ and $ C_{uB}^{(13)*} $	tZu	LH	0.15	$0.13^{+0.03}_{-0.02}$
$ C_{uW}^{(31)} $ and $ C_{uB}^{(31)} $	tZu	RH	0.16	$0.14^{+0.03}_{-0.02}$
$ C_{uW}^{(23)*} $ and $ C_{uR}^{(23)*} $	tZc	LH	0.22	$0.20^{+0.04}_{-0.03}$
$ C_{uW}^{(32)} $ and $ C_{uB}^{(32)} $	tZc	RH	0.21	$0.19^{+0.04}_{-0.03}$

Search for $\tau\mu$ cLFV with top quarks

- Charged lepton flavor violation (cLFV) is extremely suppressed
 - Possible in the SM via neutrino mixing at loop level, ${\rm BF_{SM}}(\mu \to e \gamma) < 10^{-55}!$
 - Any observation indicates new physics
- * Main backgrounds from $t\bar{t}$ + non-prompt μ $(t\bar{t}+NP\mu)$, $t\bar{t}V/t\bar{t}H$, jets mis-ID'd as τ
 - Data-driven fake τ estimation in dedicated control region ($\mu^+\mu^- + \tau_{\rm had}$ i.e. Z+jets)
- * Single bin in SRs, CR binned in H_T (scalar sum of jet p_T)
- * Stringent limits on BR($t \to \mu \tau q$) obtained and interpreted in SMEFT

Top+X production—

ttW inclusive and differential Cross Section

- + $\sigma(t\bar{t}W)$ measured 20-50% larger than prediction (consistently by both ATLAS and CMS)
 - Large background for $t\bar{t}H$ and $t\bar{t}t\bar{t}!$
- + Use di-lepton triggers, select $2\ell SS/3\ell$ channels + ≥2 jets, ≥1 b-tagged
 - Bkgs from $t\bar{t}Z/H$, VV, non-prompt leptons, $t\bar{t}t\bar{t}$ at high N_{jet}
 - Semi data-driven template fit method using CRs defined with lepton isolation BDT
- * Inclusive cross section remains larger than theory predictions (1.5 σ tension with FxFx)
- * Perform first differential measurement of $t\bar{t}W$ in 9 observables using profile likelihood unfolding (PLU)
 - Shapes consistent between various MC and data

ttW leptonic charge asymmetry

SLAC

- * $t\bar{t}$ forward-central asymmetry can probe NLO QCD effects, test of SM
 - Symmetry of pp beams reduces sensitivity!
 - Emission of W removes symmetric gg contribution, polarizes quark line
- * Similar strategy as for ttW incl.+diff.
 - Target only 3l channel, train BDT to identify which same-sign lepton came from top
 - Use PLU for particle-level measurement
- + Dominant systematics from uncorrelated background NFs in $\Delta\eta^{\pm}$ bins

$$A_c^{\ell}(t\bar{t}W) = -0.123 \pm 0.136 \text{ (stat.)} \pm 0.051 \text{ (syst.)}$$

Leptonic Charge Asymmetry $A_c^{\ell} = \frac{N(\Delta_y^{\ell} > 0) - N(\Delta_y^{\ell} < 0)}{N(\Delta_y^{\ell} > 0) + N(\Delta_y^{\ell} < 0)}, \quad \Delta_y^{\ell} = |y_{\ell^+}| - |y_{\ell^-}|$

Observation of four top quark production

- + $t\bar{t}t\bar{t}$ is one of the most massive SM signatures that can be probed at the LHC
 - Cross section of ~12 fb @NLO in SM, can be enhanced in BSM that couples to top quark
 - High multiplicities in the final state (\geq 6 jets, \geq 2 leptons, H_T \geq 500 GeV in SR)
- + Most sensitive channels $2\ell SS$ /multi-lepton
- + Perform data-driven estimation of dominant $t\bar{t}W$ background w/ ≥ 7 jets
- + Observed (expected) sig. of 6.1σ (4.3σ)
 - Interpretations with 4-fermion EFT operator, Higgs oblique parameter, CP-structure of top Yukawa coupling, $t\bar{t}t$ cross section

rXiv:2302.01283

- * Rare t+X measurements probe EW couplings
 - $t\bar{t} + H, W, Z, \gamma$ all observed, but only t + W, Z
 - Target t-channel $tq\gamma$, distinct signature of forward b-jet that is not tagged (outside tracker coverage)!

- Veto on $m(\ell\gamma)$ in m_Z window to reduce $e \to \gamma$
- ABCD method for $h \to \gamma$ estimation
- + Observed (expected) sig. of 9.3σ (6.8σ)
- * Parton-level fiducial cross section of $\sigma_{tq\gamma} \times B(t \to \ell \nu b) = 688 \pm 23 \text{ (stat)} \pm 73 \text{ (syst) fb}$
 - Compatible with SM predictions!

BSM searches-

Search for $t\bar{t}H/A \rightarrow t\bar{t}t\bar{t}$

SLAC

- * Search for associated production of heavy (pseudo-)scalar Higgs decay to $t\bar{t}$ (2HDM)
 - Most dominant decay for $m_{H/A}>2m_{top}$
 - Search for masses between 400 and 1000 GeV
- * Target 2ISS/3I channels, similar challenges as SM $t\bar{t}t\bar{t}$ (ttV/ttH, non-prompt backgrounds)
 - Template fit background estimation
- * Signal ID using 2 BDT classifiers:
 - $SM\ BDT$: separates $SM\ t\bar{t}t\bar{t}$ from other bkgs
 - BSM mass-parameterized. BDT: BSM $t\bar{t}t\bar{t}$ vs. all
- ◆ 4x better exclusion limits over previous result with 36 fb⁻¹!

- arXiv:2301.03902

- + Froggatt-Nielson mechanism: broken U(1) flavor symmetry w/ BSM Higgs X
 - M_X < 200 GeV, $X \to b \bar{b}$ leads decay
- + Main background $t\bar{t}$ +jets, use datadriven correction in control regions
 - Use pseudo-continuous b-tagging!
 - b₆₀-jet (60% tag efficiency working point) and b₇₀-jet (looser: pass 70%, fail 60%)
 - $SR = 3b_{60}$; $CR = 2b_{60} + 1b_{70}$
- * 3x better than previous analyses! (adjusted for different luminosity)
 - Better b-tagging, using neural net training vs. likelihood discriminant, $t\bar{t}$ +jets modeling improvement

5j

6j

SR CR

Summary and Conclusions -

- + ATLAS is pursuing rich program of top quark physics using the full Run 2 dataset
- * Many improved searches for FCNC, limits improved by up to 5x over previous measurements
- * Nearly all measurements and searches interpreted in SMEFT framework
- + ATLAS has observed two new top-associated processes: $t\gamma$ and $t\bar{t}t\bar{t}$
- + First and only differential cross section and charge asymmetry measurements of $t\bar{t}W$
- * Searches for BSM signals giving unique detector signatures

Thank you for your attention!

Backup -

Search for $t \rightarrow \gamma u/\gamma c$ and $u/c \rightarrow t\gamma$

SLAC

- * Search for FCNC $u\gamma t$ and $c\gamma t$ with single-top production **and** decay
- * Backgrounds from $t\bar{t}\gamma$, $W\gamma$ +jets, and misidentified electrons or hadrons
 - CR for prompt photon backgrounds
 - $\gamma \rightarrow e$ fake rate estimated with $e\gamma$ near m_Z
 - $\gamma \rightarrow h$ estimated with ABCD method
- ◆ Train a multi-class neural net to classify:
 - Production mode vs. decay mode vs. bkg
- Most stringent limits to date!
 - Improved by 3.3-5.4x over previous limit from including >1 jet events and increased luminosity

Object	SR	$ CR t \bar{t} \gamma $	CR $W\gamma$ +jets	
Photon ($p_{\rm T} > 20 \text{ GeV}$)	= 1			
Lepton ($p_{\rm T} > 27 \text{ GeV}$)	= 1			
$E_{ m T}^{ m miss}$	> 30 GeV			
Jets $(p_T > 25 \text{ GeV})$	≥ 1	≥ 4	≥ 1	
b-tagged jets (60% WP)	= 1	_	= 0	
b-tagged jets (70% WP)	= 1	≥ 1	= 0	
b-tagged jets (77% WP)	= 1	≥ 2	= 1	
$m(e,\gamma)$	_	_	∉ [80, 100] GeV	

Search for u/cHt, $H \rightarrow \tau^+\tau^-$

SLAC

- Target FCNC through production and decays of top quarks
 - Target several channels depending on decay of taus ($t_\ell \tau_{\rm had} \tau_{\rm had}$ most sensitive)
- Perform kinematic fit to reconstruct invisible tau decay products
- + Dominant background is $t\bar{t}$ +jets and fake τ train BDT to discriminate S/B
- * Exclusion limits improve by factor 2.5 from analysis improvements
 - Lepton channels, tH production, etc.

