Non-resonant di-Higgs searches in four b final state at CMS Pheno 2023

Chuyuan Liu (Carnegie Mellon University) on behalf of the CMS collaboration

May 9, 2023

C 1		
(huv	/IIan	
- c	aun	

Motivation

• Direct measurement of the Higgs trilinear self-coupling $(\kappa_{\lambda} = \lambda_3 / \lambda_3^{SM})$

$$\mathcal{L} \supseteq rac{1}{2}m_H^2\phi^2 + \lambda_3\phi^3 + \lambda_4\phi^4$$

- Largest branching fraction $BR(HH \rightarrow b\bar{b}b\bar{b}) = 33.9\%$ but dominant by QCD multijet background which is hard to simulate.
- The following analyses will be presented:

Pro	duction mode	SM cross section(pb)		Analysis	
gluc	gluon fusion(ggF)		$31.1^{+2.1}_{-7.2}$	Phys.Rev.Lett. 129, 081802(2022)(resolved)	
vector boson fusion(VBF) 1.726 ± 0.036		726 ± 0.036	arXiv:2205.06667(CMS-B2G-22-003)(boosted)		
	W^-HH		0.173 ± 0.005		
VHH	W^+HH	0.865	0.329 ± 0.007	CMS-HIG-22-006	
	ZHH		$0.363^{+0.013}_{-0.011}$		

Resolved ggF and VBF

Boosted ggF and VBF arXiv:2205.06667 (CMS-B2G-22-003)

i (VBF)

bb

н

Figure: QCD: reweighted data with jets failing the $D_{b\bar{b}}$ selection Other: simulation

Figure: Boosted topology

Chuvuan Liu

j (VBF)

ggF and VBFResults

Discriminating variables used in the likelihood fit:

- Resolved:
 - ▶ ggF: signal vs background (SvB) BDT output distribution
 - VBF SM-like: $m_{\rm HH}$ distribution
 - VBF κ_{2V} -like: number of events
- $\bullet\,$ Boosted: ${\it m}_{\rm HH}$, ${\it D}_{\rm b\bar{b}}$, ${\it m}_{\rm reg}$ and BDT distribution.

Observed (expected) 95% CL upper limit at SM

- Resolved:
 - ► $3.9(7.8) \times \sigma_{ggF+VBF}^{theory}$ at SM
 - ▶ $226(412) \times \sigma_{\text{VBF}}^{\text{theory}}$ at SM
- Boosted:
 - ▶ $9.9(5.1) \times \sigma^{\rm theory}_{\rm ggF+VBF}$ at SM

ggF and VBF κ_{λ} Scan

$\mathsf{ggF}\xspace$ and $\mathsf{VBF}\xspace$

 κ_{2V} scan

Excluding $\kappa_{2V} = 0$ with 6.3σ from boosted VBF

Figure: Resolved, $-0.1(-0.4) < \kappa_{2V} < 2.2(2.5)$

Figure: Boosted, $0.62(0.66) < \kappa_{2V} < 1.41(1.37)$

VHH

CMS-HIG-22-006

200

150

100

50

Data-MC MC

• Four analysis channels based on vector boson decay: 2L: $Z \rightarrow ll$, 1L: $W \rightarrow l\nu$, MET: $Z \rightarrow \nu\nu$, FH: $Z/W \rightarrow jj$. Resolved H in all channels. Boosted H in MET and 1L

Figure: FH background comparing to hemisphere-mixing data(left: 1 set, right: averaged over 15 sets): QCD multijet: reweighted 3b data. $t\bar{t}$: simulation May 9, 2023

Figure: Reweighted simulated background

Chuvuan Liu

VHH

Results

- Discriminating variables used in the likelihood fit: SvB classifier output distribution.
- Observed (expected) 95% CL upper limits:

•
$$-37.7(-30.1) < \kappa_{\lambda} < 37.2(28.9)$$

• $-12.2(-7.2) < \kappa_{2V} < 13.5(8.9)$

$$294(124) imes \sigma_{VHH}^{
m theory}$$
 at SM

• Decomposed κ_{2W} and κ_{2Z} according to vector boson decay:

►
$$-14.0(-10.2) < \kappa_{2W} < 15.4(11.6)$$

►
$$-17.4(-10.5) < \kappa_{2Z} < 18.5(11.6)$$

• For SM signal, the observed significance is $2.6\sigma.$

Systematic Uncertainties

Leading sources of systematic uncertainties:

- Resolved ggF + VBF: background modeling , trigger efficiency, jet energy scale and resolution , b-tagging efficiency
- Boosted ggF + VBF: bb-tagging efficiency, jet energy scale and resolution
- VHH: background modeling/, b-tagging efficiency, jet energy scale and resolution

one of the most important and the hardest to constrain, but we have a new good idea for doing it in a principled way

Combination of ggF and VBF Nature 607, 60–68(2022)

Figure: HL-LHC projection

Figure:

 $bb \gamma\gamma$ (up, dominant by stat unc.) bb bb (down, dominant by syst unc.)

Summary

- \bullet Results from ggF, VBF and VHH to $b\bar{b}b\bar{b}$ have been presented
- VHH will contribute to the next combination.
- The performance of $b\bar{b}b\bar{b}$ channel in HL-LHC may be further improved when the systematic uncertainties are better constrained.

Backup Slides

Resolved ggF and VBF

SvB and $m_{\rm HH}$

Figure: The two leftmost columns show the BDT output in the low- and high-mass categories, and the rightmost column shows the $m_{\rm HH}$ distribution in the VBF SM-like category

 $HH \rightarrow bbbb$ at CMS

 κ_V scan

Figure: Boosted ggF and VBF

Boosted ggF and VBF $_{\mbox{\scriptsize Results}}$

Figure: κ_{λ} vs κ_{2V} scan (left) and upper limit at $\kappa_{2V} = 0$ (right)

VHH Signal Strength

Figure: Best fit signal strength at SM (left), upper limit at SM (middle) and upper limit at $\kappa_{\lambda} = 5.5$

VHH

Results

Figure: Expected (left) and observed (right) likelihood scans of κ_{λ} vs κ_{2V} (up) and κ_{2W} vs κ_{2Z} (down)

May 9, 2023