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Motivation

Ultra-light scalar or vector bosons are well-motivated dark matter candidates. 
These include QCD axion and dark photon.

They can form a coherently oscillating background. 

Interaction of this background with Standard Model fields leads, 
e.g., to the variation of fundamental constants of Nature. 

New possibilities for dark matter searches, e.g., in atomic clock experiments.

 The particles can form dense compact objects, with .ρlocal ≫ ρaverage

These objects are bound by self-gravity; also self-interaction may play an important role.

Boson / Axion / Proca stars — coherent / solitonic / classical configurations 

They can also be trapped in a background potential of some astrophysical body, 
such as the Earth or the Sun, and form a “local halo”.

This is intriguing: the presence of such a halo could greatly enhance the sensitivity of terrestrial 
experiments to new physics.

Dark matter exists. 
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Setup
Assume a local, nonrelativistic ( , where  is the bound state energy and  is a dark matter particle mass)  
halo sustained by the gravitational potential of the host body.

E ≪ mc2 E m 

Here we do not consider how to form such a halo  the halo mass  is a free parameter (subject 
to experimental constraints).

⇒ Mhalo

On the other hand, the halo size  is fixed by  and the parameters of the host body.  
We take it to be the solid ball of mass  and radius .

ℓ m
M R

 For concreteness, take the Earth as the host body.

If , the halo extends beyond the Earth’s surface 
  can be probed in terrestrial and near-orbit experiments.

ℓ > R⊕
⇒

If , the halo is in the Earth’s interior  much harder to probe.ℓ < R⊕ ⇒

 The problem of finding the scalar halo profile reduces to solving the Schroedinger equation:

φ(r, t) =
2c
m (Ψ(r, t)e−imc2t + c . c . ) , Ψ(r, t) = ψ (r)e−iEt

x = r/R , ℳ = Gm2MR , ℰ = EmR2 — dimensionless units

— nonrel. ansatz

−
1
x2

d
dx (x2 dψ

dx ) + 2(ℳΦ̃ − ℰ)ψ = 0 —  is the (rescaled) grav. potentialΦ̃

The solution can be found analytically. We are interested in the ground state .ψ0(x) 1 2 3 4 5

0.2
0.4
0.6
0.8
1.0

Local scalar halo at .ℳ = 1The only parameter characterising the halo is .ℳ

ℓ ∼ R⊕ ( 10−9 eV
m )

2

m ≪ 10−9 eV

ℓ ∼ R⊕ ( 10−9 eV
m )

1/2

m ≫ 10−9 eV

M, R
0808.0899

1902.08212
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Neutrino oscillations as a probe of the local halo
Assume that the particles comprising the halo couple to neutrinos.

Then one can look for the halo in the neutrino oscillation data.
 

If      Enhanced homogeneous oscillating background    Stronger constraints on the couplingsℓ ≳ R⊕ ⇒ ⇒

Observational consequences of possible interactions between ultra light dark matter and neutrinos 
have been extensively studied in various terrestrial, astrophysical and cosmological setups.

What can we add?

If      Probe the small-size, interior halo inaccessible by other means; resolve its spatial profileℓ ≪ R⊕ ⇒

In reactor / accelerator neutrino experiments

With atmospheric neutrinos flying through the Earth

7

FIG. 5. Left: Contours showing the value of the scalar-neutrino coupling y in (11), for a given neutrino energy E and halo mass
Mhalo, at which the relative deviation from the vacuum neutrino oscillation probability is 0.1. Right: A similar contour plot for
the suppression scale ⇤5 of the scalar-neutrino interaction (13). We assume m = 10�10 eV (big halo), and �m2

0 = 2.5⇥ 10�3

eV2. The grey shaded region depicts the experimentally excluded values of Mhalo and the vertical dashed line depicts the value
of E at which ⌘ = 1 (see eq. (28)).

neutrinos traversing the Earth, with their source and de-
tector located on opposite sides of the planet (see Fig. 6
for an illustration). This setup is typical for atmospheric
neutrinos, and we will consider oscillation parameters rel-
evant for a GeV-scale neutrino: �m

2
0 ⇡ 2.5 ⇥ 10�3 eV,

sin2 2✓0 ⇡ 0.087. Note that, depending on the neutrino
mass ordering and energy, the contribution to the Hamil-
tonian (15) generated by the Earth’s matter can signif-
icantly a↵ect atmospheric neutrino oscillations and en-
hance them resonantly (see [33] and references therein).
For simplicity, we do not consider this matter e↵ect here.
This is justified since, unlike the Earth’s matter, the res-
onant oscillations due to the halo can occur for neutrinos
in a broad range of energies, as seen in Section IVB.

First, we repeat the analysis of the perturbative cor-
rections in the adiabatic regime. Using eq. (10b) it is

�

z = L

z = 0

zr

FIG. 6. The path of a neutrino propagating through a halo
core located inside the Earth.

convenient to rewrite the parameters (27), (28) as

✏ ⇠
✓

�

10�23

◆✓
10�9 eV

m

◆5/4 ✓
Mhalo

1015 kg

◆1/2

, (35)

⌘ = 400

✓
2.5⇥ 10�3 eV2

�m
2
0

◆⇣
m

10�9 eV

⌘✓
E

1 GeV

◆
.

(36)
Here the parameter ✏ contains the amplitude of the field
f0 in the center of the halo. Next, for atmospheric neu-
trinos one clearly obtains ⌘ � 1. Additionally, mL � 1
for neutrinos traversing the Earth. This allows us to
compute the e↵ective mass-squared di↵erence �m

2
e↵ in

eq. (20) independently of the rest of the probability. Fur-
thermore, it is convenient to express �m

2
e↵ as a function

of the nadir angle ⇥ of the incoming neutrino. From
eqs. (21), (23b), (24b) and (25) we obtain

�m
2
e↵ = �m

2
0

✓
1 + 2✏2⌘2Am2

Is(⇥;m)

cos⇥

◆
, (37)

where we define

Is(⇥;m) ⌘
Z 2s

0
dx bf2(

p
x2 + 1� 2xs) , (38)

s = cos⇥, x = z/R�, and bf is the normalised halo pro-

file, bf(0) = 1. The function Is(⇥;m)/ cos⇥ is plotted in
Fig. 7 for the scalar mass m = 5⇥ 10�9 eV at which the
halo size is comparable to that of the Earth, ` ⇡ 0.5R�.
In a realistic setup, due to the limited angular and

energy resolution of a neutrino detector, one is sensitive
to the oscillation probability which is averaged over the
position of the neutrino source and the neutrino energy

The path of a neutrino 
propagating through a halo 

core located inside the Earth.

This is at the cost of the hypothesis that the halo exists; 
the constraints are functions of .Mhalo

For  eV, we cannot rely on the non-observation of time-
modulation of neutrino parameters.

m ≳ 10−10

1608.01307, 1705.06740, 1705.09455, 1804.05117, 1803.01773, 1809.01111, 
1908.02278, 2007.03590, 2107.10865, 2205.03749, 2212.05073, 2301.04152

 

 

, “big halo”m ∼ 10−10 − 10−9 eV

, “small (interior) halo”m ≫ 10−9
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ℒ4,int = − yhabφψ̄LaψC
Lb + h . c .

ℒ5,int = −
gab

Λ5
∂μφ ψ̄LaγμψLb

i
dνa

dz
= Habνb

H =
1

2E
U0diag(0,Δm2

0,21, . . . )U†
0 + ΔH =

1
2E

Udiag(0,Δm2
21, . . . )U†

ΔH4 =
y
E

φ(h†mν + m†
ν h) +

2y2

E
φ2h†h

ΔH5 =
m
Λ5

gφ

Dark matter - neutrino interaction
 Adopt the plane-wave treatment of neutrino oscillations.

The evolution equation for the (ultrarelativistic) neutrino wavefunction then takes the form:

 For example, consider the following scalar-neutrino interaction terms:

shifts the neutrino mass

shifts the neutrino 
momentum

| ·φ | ≫ |∇φ |

vacuum neutrino mixing matrix

vacuum mass-squared differences

Neglect effects of decoherence and dispersion.

diagonalises the full Hamiltonian

z-dependent eigenvalues

φ(r, t) = f(r)cos(mt + δ) — background halo configuration

complex, symmetric

Hermitian

See, e.g., R. Mohapatra, G. Senjanovic, Z. Phys. C 17, 53 (1983)

See, e.g., 2107.14018
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Adiabatic regime

⟨Paa⟩δ =
1

2π ∫
2π

0
dδ PaaPab(L) = ∑

i

Uai(0)e− i
2E ∫L

0 dz m2
i (z)U⋆

bi(L)

2

,

Perturbation theory

— Survival probability

Big halo

Introduce the following parameters:     β4 =
y∑ mν

2E
, β5 =

m
2Λ5

, β = β4 or β5

Then  ⟨Paa⟩ = P0,aa + (ϵη)2⟨P2,aa⟩δ

 

 

ϵ ≡
βf0
m

∼ ( β
10−22 ) ( m

10−10 eV ) ( Mhalo

1015 kg )
1/2

η ≡
mE
Δm2

0
= ( 2.5 × 10−3 eV2

Δm2
0 ) ( m

10−10 eV ) ( E
25 MeV )

— Expansion parameter, depends on the halo mass

— Number of halo oscillations per one neutrino oscillation
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Adiabatic regime

5

0.0 0.5 1.0 1.5

0.6

0.7

0.8

0.9

1.0

FIG. 2. The averaged neutrino survival probability (29) in the
near-constant background, within the validity of perturbation
theory and the adiabatic approximation, as a function ofX0 =
⇡L/Losc

0 . We assume that the neutrino couples to the halo
via the derivative interaction (13) and take sin2 2✓0 = 0.087,
g11 = 0.5, g12 = i, g22 = 0, ⌘ = 0.1 and ✏⌘ = 0.1 (black
solid), 0.25 (red dot-dashed). The green dashed line denotes
the vacuum probability.

First, we discuss perturbative corrections to the sur-
vival probability in the adiabatic approximation. It is
convenient to introduce the following parameters,

✏ ⌘ �f0

m
⇠

✓
�

10�22

◆⇣
m

10�10 eV

⌘✓
Mhalo

1015 kg

◆1/2

, (27)

⌘ ⌘ mE

�m
2
0

=

✓
2.5⇥ 10�3 eV2

�m
2
0

◆⇣
m

10�10 eV

⌘✓
E

25 MeV

◆
,

(28)
where Mhalo ⇠ `

3
m

2
f
2
0 and eq. (10a) has been used. The

parameter ✏ plays the role of an expansion parameter,
while ⌘ determines the number of halo oscillations in one
neutrino oscillation length. After integrating (26) over �
using eq. (20), the linear in � correction to the survival
probability vanishes. To second order in �, one obtains

hPaai� = 1� sin2 2✓0 sin
2
X0

� 2✏2
✓
A

2
m1 sin

2 2✓0 cos(2X0) sin
2(2⌘X0)

+ ⌘A✓1Am1 sin 4✓0 sin(2X0) sin(4⌘X0)

+ 2⌘2

X0Am2 sin

2 2✓0 sin(2X0)

+ 2A2
✓1

�
cos 4✓0 sin

2
X0 cos

2(2⌘X0)

+ cos2 X0 sin
2(2⌘X0)

�
+A✓2 sin 4✓0 sin

2
X0

�◆
,

(29)
where X0 = ⇡L/L

osc
0 and L

osc
0 = 4⇡E/�m

2
0 is the vac-

uum oscillation length. Note that the correction to the
vacuum oscillation probability is qualitatively di↵erent
depending on the asymptotic limits of ⌘. When ⌘ ⌧ 1
(halo oscillation much slower than the neutrino), the cor-
rection is simply due to the constant background poten-
tial (similar to the MSW e↵ect). Expanding eq. (29) for
small ⌘, the leading correction term is / ✏

2
⌘
2, and hence

the perturbation expansion is valid until ✏ ⇠ ⌘
�1 � 1.

This can be seen in Fig. 2, where (29) is plotted at
E = 2.5 MeV and several values of ✏⌘, and, for defi-
niteness, we use the dimension five coupling (13). In
the second case, when ⌘ � 1 (halo oscillates much faster
than the neutrino), the probability is modulated by small
“wiggles” of frequency ⇠ ⌘X0/L ⇠ m. 2 Expanding at
large ⌘, one again finds that the leading correction is
/ ✏

2
⌘
2, which would lead to the conclusion that the per-

turbation expansion remains valid until ✏ ⇠ ⌘
�1.

However, the above analysis is applicable as long as
nonadiabatic e↵ects are small. The adiabatic approx-
imation is controlled by the gradient of the instanta-
neous mixing angle: ✓

0(z) ⌧ �m
2(z)/E. The function

✓
0(z) not only depends on the spatial gradient of the
halo but also on its much more rapid temporal varia-
tion. From eqs. (24a) and (25) we find that inside the
halo ✓

0(z) ⇠ �Emf0/�m
2
0. Hence, the expression (20)

and the perturbative result (29) are valid, provided

✏⌘
2 ⌧ 1 . (30)

Thus, for neutrinos with ⌘ � 1, eq. (29) is only valid for
✏ . ⌘

�2. For larger halo amplitudes (or larger neutrino
energies), the time-variation of the oscillation probability
leads to multiple resonances during the neutrino propa-
gation and, in general, needs to be treated numerically.
We will next study this case.

B. Nonadiabatic regime in the big halo

When the analytic expression (29) is no longer valid,
either because perturbation theory or the adiabatic ap-
proximation breaks down, one has to solve the evolution
equation (14) numerically. The survival probability Paa

of flavour a, at a distance L with boundary conditions
⌫a(0) = 1, ⌫b(0) = 0 is then given by |⌫a(L)|2. Before
presenting the numerical results, it is instructive to an-
alytically estimate the deviation from the vacuum prob-
ability in the nonadiabatic regime for neutrino energies
E � 25 MeV, corresponding to ⌘ � 1. In this case, as
discussed in Section IVA, the adiabatic regime breaks
down at ✏ ⇠ ⌘

�2, long before the correction to the vac-
uum oscillations becomes sizeable. The probability be-
havior at larger values of ✏ is qualitatively di↵erent for
the dimension-four (11) and dimension-five (13) interac-
tions, and therefore we will treat them separately.
Consider first the derivative coupling (13). Interest-

ingly, in this case, nonadiabatic e↵ects tend to suppress
the correction until ✏ ⇠ 1 � ⌘

�1. To see this explicitly,
we rotate to the mass basis in eq. (14) with the vacuum

2 Note that the length scale of the halo oscillations, ⇠ m�1, is still
much larger than the e↵ective length of the neutrino wavepacket
(see, e.g., [37, 38]), and does not spoil the plane-wave treatment
of neutrino oscillations according to eq. (14).

⟨Paa⟩δ =
1

2π ∫
2π

0
dδ PaaPab(L) = ∑

i

Uai(0)e− i
2E ∫L

0 dz m2
i (z)U⋆

bi(L)

2

,

Perturbation theory

— Survival probability

Big halo

Introduce the following parameters:     β4 =
y∑ mν

2E
, β5 =

m
2Λ5

, β = β4 or β5

Then  ⟨Paa⟩ = P0,aa + (ϵη)2⟨P2,aa⟩δ

 

 

ϵ ≡
βf0
m

∼ ( β
10−22 ) ( m

10−10 eV ) ( Mhalo

1015 kg )
1/2

η ≡
mE
Δm2

0
= ( 2.5 × 10−3 eV2

Δm2
0 ) ( m

10−10 eV ) ( E
25 MeV )

— Expansion parameter, depends on the halo mass

— Number of halo oscillations per one neutrino oscillation

Here we take the derivative scalar-neutrino coupling,  η = 0.1,
X0 = πL /Losc

0 , sin2 2θ0 = 0.087, g11 = 0.5, g12 = i, g22 = 0.

ϵη = 0
ϵη = 0.1

ϵη = 0.25

If , this is like the usual MSW effect; P.T. works until .η ≪ 1 ϵ ∼ η−1 ≫ 1

If , the neutrino propagates in the wildly oscillating background; P.T. 
works until  ? 

η ≫ 1
ϵ ∼ η−1

Not really: the adiabatic approximation breaks down at ϵ ∼ η−2 ≪ η−1 .
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Big halo
Nonadiabatic regime at η ≫ 1 (that is, at  MeV for  eV)E ≫ 25 m = 10−10

The situation is different for the different types of scalar-neutrino interaction.
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Big halo
Nonadiabatic regime at η ≫ 1 (that is, at  MeV for  eV)E ≫ 25 m = 10−10

The situation is different for the different types of scalar-neutrino interaction.

ΔH4

ϵ
η−1η−2

Adiabatic approx. Nonadiabatic regime

1

Correction to the osc. prob. is small Order-one effect

Order-one effect 
according to P.T.

6

FIG. 3. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the derivative interaction (13), assuming sin2 2✓0 =
0.99, g11 = 0.5, g12 = i, g22 = 0, ⌘ = 40 and ✏ = 0.1 (black),
1.0 (thin blue). The green dashed line denotes the vacuum
probability.

mixing matrix, ⌫i = U
†
0,ia⌫a. Using eqs. (17) and (22),

we obtain

i
d⌫i
dz

=
m

2
i

2E
⌫i + 2�5f0 cos(mz + �) g̃ij⌫j , (31)

where g̃ = U
†
0gU0. We expand the mass eigenstates

around their vacuum values,

⌫i(z) = (1 +�⌫i(z))e
�i

m2
i z

2E , (32)

assuming that |�⌫i(z)| ⌧ 1. Substituting eq. (32) in
eq. (31) and assuming ⌘ � 1, we find that the deviation
accumulated over one neutrino oscillation period is

|�⌫i(L
osc
0 )| ⇠ ✏|g̃ij sin(4⇡⌘)| , (33)

where, in the two-flavour scheme, i, j = 1, 2 and i 6= j.
Thus, for neutrinos with E � 25 MeV, the size of the
correction due to the halo is controlled by the parameter
✏. Note again that, even though at ⌘

�2 . ✏ ⌧ 1 the
correction to the vacuum oscillation is small, the neu-
trino propagation is governed by nonadiabatic e↵ects.
The neutrino experiences two resonances at every cycle
of the halo time-variation; however, their combined ef-
fect is small unless ✏ & 1. This behavior is illustrated in
Fig. 3, which shows the numerical solution for the sur-
vival probability, averaged over the halo phase, at E = 1
GeV (corresponding to ⌘ = 40) and several values of ✏.
We see that the halo time-variation induces secondary
oscillations in the vacuum neutrino oscillations. In the
limit ✏ � 1, the probability, which is averaged over these
secondary oscillations, tends to 1/2.

We next turn to the dimension-four interaction (11).
The important di↵erence is the presence of the quadratic
' term in the Hamiltonian (17). This term dominates
the linear ' term when ✏ & ⌘

�1(
P

m⌫)/
p

�m
2
0. On

the other hand, repeating the computation of the correc-
tion �⌫i(z) to the mass eigenstates, we obtain that the
quadratic term results in the following correction

|�⌫i(L
osc
0 )| ⇠ ✏

2
⌘
2 �m

2
0

(
P

m⌫)
2 |h̃ij | , (34)

0.0 0.5 1.0 1.5

0.2

0.4

0.6

0.8

1.0

FIG. 4. The averaged neutrino survival probability (26) in
the oscillatory halo background, where the neutrino couples
to the halo via the interaction (11), assuming sin2 2✓0 = 0.99,
�m2

0 = 2.5 · 10�3 eV2,
P

m⌫ = 0.1 eV, h11 = 0.5, h12 = i,
h22 = 0, ⌘ = 40 and ✏⌘ = 0.5 (black), 2.0 (thin blue). The
green dashed line denotes the vacuum probability.

where h̃ = U
†
0h

†
hU0. We see that, barring the order-one

ratio
p
�m

2
0/

P
m⌫ & 0.5, the parameter governing the

nonadiabatic oscillations in the presence of the interac-
tion (11) is ✏⌘, which is similar to the adiabatic regime.
To confirm this, we solve numerically eq. (14) with the
Hamiltonian (15), (16), and compute the survival proba-
bility averaged over the halo phase. The result is shown
in Fig. 4, where we take again E = 1 GeV and sev-
eral values of ✏⌘. Note that the quadratic ' term in the
Hamiltonian (16) does not induce secondary oscillations,
unlike the linear term, and the latter are suppressed. In
the limit ✏⌘ � 1, the averaged survival probability tends
to 1/2.
In summary, for neutrinos with ⌘ ⌧ 1, the small pa-

rameter controlling the deviation from the vacuum os-
cillations is ✏⌘, and the e↵ect of the halo background is
similar to that of a homogeneous matter potential. For
neutrinos with ⌘ � 1, the small parameter is ✏ in the
case of the derivative interaction (13), and ✏⌘ in the case
of the marginal interaction (11). Using the definitions
(27), (28), these results can be rephrased in terms of the
neutrino energy, the halo mass, and the scalar-neutrino
coupling parameter, y or ⇤5. This is done in Fig. 5,
which shows the values of y (in the dimension-four in-
teraction (11)) or ⇤5 (in the dimension-five interaction
(13)) necessary for a big halo composed of particles with
m = 10�10 eV to induce a 10% deviation in the os-
cillation probability, at a given neutrino energy and a
given halo mass. Depending on the choice of the scalar-
neutrino interaction term, the sensitivity to the halo is ei-
ther energy-independent (for y), or reaches its maximum
at E & 25 MeV (for ⇤5). Thus, neutrinos interacting
with su�ciently heavy scalar halos constrain dimension-
less couplings to be y . 10�15 and dimension-five scales
⇤5 . 105 GeV.

C. Probing the small (interior) halo

For a scalar mass m & 10�9 eV, the halo core is lo-
cated inside the Earth. Such a halo can be probed by

Here we take the marginal scalar-neutrino coupling,  
 

.

η = 40,
X0 = πL /Losc

0 , sin2 2θ0 = 0.99, Δm2
0 = 2.5 ⋅ 10−3 eV2,

∑ mν = 0.1 eV, h11 = 0.5, h12 = i, h22 = 0

ϵη = 0.5

ϵη = 2.0

ϵη = 0
X0
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Big halo
Nonadiabatic regime at η ≫ 1 (that is, at  MeV for  eV)E ≫ 25 m = 10−10

The situation is different for the different types of scalar-neutrino interaction.

ϵ
1η−1η−2

Adiabatic approx. Nonadiabatic regime

Would-be order-one 
effect according to P.T.

Correction to the osc. prob. is small Order-one effectΔH4 ΔH5

ϵ
η−1η−2

Adiabatic approx. Nonadiabatic regime

1

Correction to the osc. prob. is small Order-one effect

Order-one effect 
according to P.T.

6

FIG. 3. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the derivative interaction (13), assuming sin2 2✓0 =
0.99, g11 = 0.5, g12 = i, g22 = 0, ⌘ = 40 and ✏ = 0.1 (black),
1.0 (thin blue). The green dashed line denotes the vacuum
probability.

mixing matrix, ⌫i = U
†
0,ia⌫a. Using eqs. (17) and (22),

we obtain

i
d⌫i
dz

=
m

2
i

2E
⌫i + 2�5f0 cos(mz + �) g̃ij⌫j , (31)

where g̃ = U
†
0gU0. We expand the mass eigenstates

around their vacuum values,

⌫i(z) = (1 +�⌫i(z))e
�i

m2
i z

2E , (32)

assuming that |�⌫i(z)| ⌧ 1. Substituting eq. (32) in
eq. (31) and assuming ⌘ � 1, we find that the deviation
accumulated over one neutrino oscillation period is

|�⌫i(L
osc
0 )| ⇠ ✏|g̃ij sin(4⇡⌘)| , (33)

where, in the two-flavour scheme, i, j = 1, 2 and i 6= j.
Thus, for neutrinos with E � 25 MeV, the size of the
correction due to the halo is controlled by the parameter
✏. Note again that, even though at ⌘

�2 . ✏ ⌧ 1 the
correction to the vacuum oscillation is small, the neu-
trino propagation is governed by nonadiabatic e↵ects.
The neutrino experiences two resonances at every cycle
of the halo time-variation; however, their combined ef-
fect is small unless ✏ & 1. This behavior is illustrated in
Fig. 3, which shows the numerical solution for the sur-
vival probability, averaged over the halo phase, at E = 1
GeV (corresponding to ⌘ = 40) and several values of ✏.
We see that the halo time-variation induces secondary
oscillations in the vacuum neutrino oscillations. In the
limit ✏ � 1, the probability, which is averaged over these
secondary oscillations, tends to 1/2.

We next turn to the dimension-four interaction (11).
The important di↵erence is the presence of the quadratic
' term in the Hamiltonian (17). This term dominates
the linear ' term when ✏ & ⌘

�1(
P

m⌫)/
p

�m
2
0. On

the other hand, repeating the computation of the correc-
tion �⌫i(z) to the mass eigenstates, we obtain that the
quadratic term results in the following correction

|�⌫i(L
osc
0 )| ⇠ ✏

2
⌘
2 �m

2
0

(
P

m⌫)
2 |h̃ij | , (34)
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FIG. 4. The averaged neutrino survival probability (26) in
the oscillatory halo background, where the neutrino couples
to the halo via the interaction (11), assuming sin2 2✓0 = 0.99,
�m2

0 = 2.5 · 10�3 eV2,
P

m⌫ = 0.1 eV, h11 = 0.5, h12 = i,
h22 = 0, ⌘ = 40 and ✏⌘ = 0.5 (black), 2.0 (thin blue). The
green dashed line denotes the vacuum probability.

where h̃ = U
†
0h

†
hU0. We see that, barring the order-one

ratio
p
�m

2
0/

P
m⌫ & 0.5, the parameter governing the

nonadiabatic oscillations in the presence of the interac-
tion (11) is ✏⌘, which is similar to the adiabatic regime.
To confirm this, we solve numerically eq. (14) with the
Hamiltonian (15), (16), and compute the survival proba-
bility averaged over the halo phase. The result is shown
in Fig. 4, where we take again E = 1 GeV and sev-
eral values of ✏⌘. Note that the quadratic ' term in the
Hamiltonian (16) does not induce secondary oscillations,
unlike the linear term, and the latter are suppressed. In
the limit ✏⌘ � 1, the averaged survival probability tends
to 1/2.
In summary, for neutrinos with ⌘ ⌧ 1, the small pa-

rameter controlling the deviation from the vacuum os-
cillations is ✏⌘, and the e↵ect of the halo background is
similar to that of a homogeneous matter potential. For
neutrinos with ⌘ � 1, the small parameter is ✏ in the
case of the derivative interaction (13), and ✏⌘ in the case
of the marginal interaction (11). Using the definitions
(27), (28), these results can be rephrased in terms of the
neutrino energy, the halo mass, and the scalar-neutrino
coupling parameter, y or ⇤5. This is done in Fig. 5,
which shows the values of y (in the dimension-four in-
teraction (11)) or ⇤5 (in the dimension-five interaction
(13)) necessary for a big halo composed of particles with
m = 10�10 eV to induce a 10% deviation in the os-
cillation probability, at a given neutrino energy and a
given halo mass. Depending on the choice of the scalar-
neutrino interaction term, the sensitivity to the halo is ei-
ther energy-independent (for y), or reaches its maximum
at E & 25 MeV (for ⇤5). Thus, neutrinos interacting
with su�ciently heavy scalar halos constrain dimension-
less couplings to be y . 10�15 and dimension-five scales
⇤5 . 105 GeV.

C. Probing the small (interior) halo

For a scalar mass m & 10�9 eV, the halo core is lo-
cated inside the Earth. Such a halo can be probed by

Here we take the marginal scalar-neutrino coupling,  
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FIG. 3. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the derivative interaction (13), assuming sin2 2✓0 =
0.99, g11 = 0.5, g12 = i, g22 = 0, ⌘ = 40 and ✏ = 0.1 (black),
1.0 (thin blue). The green dashed line denotes the vacuum
probability.

mixing matrix, ⌫i = U
†
0,ia⌫a. Using eqs. (17) and (22),

we obtain

i
d⌫i
dz

=
m

2
i

2E
⌫i + 2�5f0 cos(mz + �) g̃ij⌫j , (31)

where g̃ = U
†
0gU0. We expand the mass eigenstates

around their vacuum values,

⌫i(z) = (1 +�⌫i(z))e
�i

m2
i z

2E , (32)

assuming that |�⌫i(z)| ⌧ 1. Substituting eq. (32) in
eq. (31) and assuming ⌘ � 1, we find that the deviation
accumulated over one neutrino oscillation period is

|�⌫i(L
osc
0 )| ⇠ ✏|g̃ij sin(4⇡⌘)| , (33)

where, in the two-flavour scheme, i, j = 1, 2 and i 6= j.
Thus, for neutrinos with E � 25 MeV, the size of the
correction due to the halo is controlled by the parameter
✏. Note again that, even though at ⌘

�2 . ✏ ⌧ 1 the
correction to the vacuum oscillation is small, the neu-
trino propagation is governed by nonadiabatic e↵ects.
The neutrino experiences two resonances at every cycle
of the halo time-variation; however, their combined ef-
fect is small unless ✏ & 1. This behavior is illustrated in
Fig. 3, which shows the numerical solution for the sur-
vival probability, averaged over the halo phase, at E = 1
GeV (corresponding to ⌘ = 40) and several values of ✏.
We see that the halo time-variation induces secondary
oscillations in the vacuum neutrino oscillations. In the
limit ✏ � 1, the probability, which is averaged over these
secondary oscillations, tends to 1/2.

We next turn to the dimension-four interaction (11).
The important di↵erence is the presence of the quadratic
' term in the Hamiltonian (17). This term dominates
the linear ' term when ✏ & ⌘

�1(
P

m⌫)/
p

�m
2
0. On

the other hand, repeating the computation of the correc-
tion �⌫i(z) to the mass eigenstates, we obtain that the
quadratic term results in the following correction
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FIG. 4. The averaged neutrino survival probability (26) in
the oscillatory halo background, where the neutrino couples
to the halo via the interaction (11), assuming sin2 2✓0 = 0.99,
�m2

0 = 2.5 · 10�3 eV2,
P

m⌫ = 0.1 eV, h11 = 0.5, h12 = i,
h22 = 0, ⌘ = 40 and ✏⌘ = 0.5 (black), 2.0 (thin blue). The
green dashed line denotes the vacuum probability.

where h̃ = U
†
0h

†
hU0. We see that, barring the order-one

ratio
p
�m

2
0/

P
m⌫ & 0.5, the parameter governing the

nonadiabatic oscillations in the presence of the interac-
tion (11) is ✏⌘, which is similar to the adiabatic regime.
To confirm this, we solve numerically eq. (14) with the
Hamiltonian (15), (16), and compute the survival proba-
bility averaged over the halo phase. The result is shown
in Fig. 4, where we take again E = 1 GeV and sev-
eral values of ✏⌘. Note that the quadratic ' term in the
Hamiltonian (16) does not induce secondary oscillations,
unlike the linear term, and the latter are suppressed. In
the limit ✏⌘ � 1, the averaged survival probability tends
to 1/2.
In summary, for neutrinos with ⌘ ⌧ 1, the small pa-

rameter controlling the deviation from the vacuum os-
cillations is ✏⌘, and the e↵ect of the halo background is
similar to that of a homogeneous matter potential. For
neutrinos with ⌘ � 1, the small parameter is ✏ in the
case of the derivative interaction (13), and ✏⌘ in the case
of the marginal interaction (11). Using the definitions
(27), (28), these results can be rephrased in terms of the
neutrino energy, the halo mass, and the scalar-neutrino
coupling parameter, y or ⇤5. This is done in Fig. 5,
which shows the values of y (in the dimension-four in-
teraction (11)) or ⇤5 (in the dimension-five interaction
(13)) necessary for a big halo composed of particles with
m = 10�10 eV to induce a 10% deviation in the os-
cillation probability, at a given neutrino energy and a
given halo mass. Depending on the choice of the scalar-
neutrino interaction term, the sensitivity to the halo is ei-
ther energy-independent (for y), or reaches its maximum
at E & 25 MeV (for ⇤5). Thus, neutrinos interacting
with su�ciently heavy scalar halos constrain dimension-
less couplings to be y . 10�15 and dimension-five scales
⇤5 . 105 GeV.

C. Probing the small (interior) halo

For a scalar mass m & 10�9 eV, the halo core is lo-
cated inside the Earth. Such a halo can be probed by

X0Here we take the derivative scalar-neutrino coupling,  η = 40,
X0 = πL /Losc

0 , sin2 2θ0 = 0.99, g11 = 0.5, g12 = i, g22 = 0.
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FIG. 3. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the derivative interaction (13), assuming sin2 2✓0 =
0.99, g11 = 0.5, g12 = i, g22 = 0, ⌘ = 40 and ✏ = 0.1 (black),
1.0 (thin blue). The green dashed line denotes the vacuum
probability.

mixing matrix, ⌫i = U
†
0,ia⌫a. Using eqs. (17) and (22),

we obtain

i
d⌫i
dz

=
m

2
i

2E
⌫i + 2�5f0 cos(mz + �) g̃ij⌫j , (31)

where g̃ = U
†
0gU0. We expand the mass eigenstates

around their vacuum values,

⌫i(z) = (1 +�⌫i(z))e
�i

m2
i z

2E , (32)

assuming that |�⌫i(z)| ⌧ 1. Substituting eq. (32) in
eq. (31) and assuming ⌘ � 1, we find that the deviation
accumulated over one neutrino oscillation period is

|�⌫i(L
osc
0 )| ⇠ ✏|g̃ij sin(4⇡⌘)| , (33)

where, in the two-flavour scheme, i, j = 1, 2 and i 6= j.
Thus, for neutrinos with E � 25 MeV, the size of the
correction due to the halo is controlled by the parameter
✏. Note again that, even though at ⌘

�2 . ✏ ⌧ 1 the
correction to the vacuum oscillation is small, the neu-
trino propagation is governed by nonadiabatic e↵ects.
The neutrino experiences two resonances at every cycle
of the halo time-variation; however, their combined ef-
fect is small unless ✏ & 1. This behavior is illustrated in
Fig. 3, which shows the numerical solution for the sur-
vival probability, averaged over the halo phase, at E = 1
GeV (corresponding to ⌘ = 40) and several values of ✏.
We see that the halo time-variation induces secondary
oscillations in the vacuum neutrino oscillations. In the
limit ✏ � 1, the probability, which is averaged over these
secondary oscillations, tends to 1/2.

We next turn to the dimension-four interaction (11).
The important di↵erence is the presence of the quadratic
' term in the Hamiltonian (17). This term dominates
the linear ' term when ✏ & ⌘

�1(
P

m⌫)/
p

�m
2
0. On

the other hand, repeating the computation of the correc-
tion �⌫i(z) to the mass eigenstates, we obtain that the
quadratic term results in the following correction

|�⌫i(L
osc
0 )| ⇠ ✏

2
⌘
2 �m

2
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2 |h̃ij | , (34)
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FIG. 4. The averaged neutrino survival probability (26) in
the oscillatory halo background, where the neutrino couples
to the halo via the interaction (11), assuming sin2 2✓0 = 0.99,
�m2

0 = 2.5 · 10�3 eV2,
P

m⌫ = 0.1 eV, h11 = 0.5, h12 = i,
h22 = 0, ⌘ = 40 and ✏⌘ = 0.5 (black), 2.0 (thin blue). The
green dashed line denotes the vacuum probability.

where h̃ = U
†
0h

†
hU0. We see that, barring the order-one

ratio
p
�m

2
0/

P
m⌫ & 0.5, the parameter governing the

nonadiabatic oscillations in the presence of the interac-
tion (11) is ✏⌘, which is similar to the adiabatic regime.
To confirm this, we solve numerically eq. (14) with the
Hamiltonian (15), (16), and compute the survival proba-
bility averaged over the halo phase. The result is shown
in Fig. 4, where we take again E = 1 GeV and sev-
eral values of ✏⌘. Note that the quadratic ' term in the
Hamiltonian (16) does not induce secondary oscillations,
unlike the linear term, and the latter are suppressed. In
the limit ✏⌘ � 1, the averaged survival probability tends
to 1/2.
In summary, for neutrinos with ⌘ ⌧ 1, the small pa-

rameter controlling the deviation from the vacuum os-
cillations is ✏⌘, and the e↵ect of the halo background is
similar to that of a homogeneous matter potential. For
neutrinos with ⌘ � 1, the small parameter is ✏ in the
case of the derivative interaction (13), and ✏⌘ in the case
of the marginal interaction (11). Using the definitions
(27), (28), these results can be rephrased in terms of the
neutrino energy, the halo mass, and the scalar-neutrino
coupling parameter, y or ⇤5. This is done in Fig. 5,
which shows the values of y (in the dimension-four in-
teraction (11)) or ⇤5 (in the dimension-five interaction
(13)) necessary for a big halo composed of particles with
m = 10�10 eV to induce a 10% deviation in the os-
cillation probability, at a given neutrino energy and a
given halo mass. Depending on the choice of the scalar-
neutrino interaction term, the sensitivity to the halo is ei-
ther energy-independent (for y), or reaches its maximum
at E & 25 MeV (for ⇤5). Thus, neutrinos interacting
with su�ciently heavy scalar halos constrain dimension-
less couplings to be y . 10�15 and dimension-five scales
⇤5 . 105 GeV.

C. Probing the small (interior) halo

For a scalar mass m & 10�9 eV, the halo core is lo-
cated inside the Earth. Such a halo can be probed by

Here we take the marginal scalar-neutrino coupling,  
 

.

η = 40,
X0 = πL /Losc
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FIG. 3. The averaged neutrino survival probability (26) in the
oscillatory halo background, where the neutrino couples to the
halo via the derivative interaction (13), assuming sin2 2✓0 =
0.99, g11 = 0.5, g12 = i, g22 = 0, ⌘ = 40 and ✏ = 0.1 (black),
1.0 (thin blue). The green dashed line denotes the vacuum
probability.

mixing matrix, ⌫i = U
†
0,ia⌫a. Using eqs. (17) and (22),

we obtain

i
d⌫i
dz

=
m

2
i

2E
⌫i + 2�5f0 cos(mz + �) g̃ij⌫j , (31)

where g̃ = U
†
0gU0. We expand the mass eigenstates

around their vacuum values,

⌫i(z) = (1 +�⌫i(z))e
�i

m2
i z

2E , (32)

assuming that |�⌫i(z)| ⌧ 1. Substituting eq. (32) in
eq. (31) and assuming ⌘ � 1, we find that the deviation
accumulated over one neutrino oscillation period is

|�⌫i(L
osc
0 )| ⇠ ✏|g̃ij sin(4⇡⌘)| , (33)

where, in the two-flavour scheme, i, j = 1, 2 and i 6= j.
Thus, for neutrinos with E � 25 MeV, the size of the
correction due to the halo is controlled by the parameter
✏. Note again that, even though at ⌘

�2 . ✏ ⌧ 1 the
correction to the vacuum oscillation is small, the neu-
trino propagation is governed by nonadiabatic e↵ects.
The neutrino experiences two resonances at every cycle
of the halo time-variation; however, their combined ef-
fect is small unless ✏ & 1. This behavior is illustrated in
Fig. 3, which shows the numerical solution for the sur-
vival probability, averaged over the halo phase, at E = 1
GeV (corresponding to ⌘ = 40) and several values of ✏.
We see that the halo time-variation induces secondary
oscillations in the vacuum neutrino oscillations. In the
limit ✏ � 1, the probability, which is averaged over these
secondary oscillations, tends to 1/2.

We next turn to the dimension-four interaction (11).
The important di↵erence is the presence of the quadratic
' term in the Hamiltonian (17). This term dominates
the linear ' term when ✏ & ⌘

�1(
P

m⌫)/
p

�m
2
0. On

the other hand, repeating the computation of the correc-
tion �⌫i(z) to the mass eigenstates, we obtain that the
quadratic term results in the following correction

|�⌫i(L
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2
⌘
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FIG. 4. The averaged neutrino survival probability (26) in
the oscillatory halo background, where the neutrino couples
to the halo via the interaction (11), assuming sin2 2✓0 = 0.99,
�m2

0 = 2.5 · 10�3 eV2,
P

m⌫ = 0.1 eV, h11 = 0.5, h12 = i,
h22 = 0, ⌘ = 40 and ✏⌘ = 0.5 (black), 2.0 (thin blue). The
green dashed line denotes the vacuum probability.

where h̃ = U
†
0h

†
hU0. We see that, barring the order-one

ratio
p
�m

2
0/

P
m⌫ & 0.5, the parameter governing the

nonadiabatic oscillations in the presence of the interac-
tion (11) is ✏⌘, which is similar to the adiabatic regime.
To confirm this, we solve numerically eq. (14) with the
Hamiltonian (15), (16), and compute the survival proba-
bility averaged over the halo phase. The result is shown
in Fig. 4, where we take again E = 1 GeV and sev-
eral values of ✏⌘. Note that the quadratic ' term in the
Hamiltonian (16) does not induce secondary oscillations,
unlike the linear term, and the latter are suppressed. In
the limit ✏⌘ � 1, the averaged survival probability tends
to 1/2.
In summary, for neutrinos with ⌘ ⌧ 1, the small pa-

rameter controlling the deviation from the vacuum os-
cillations is ✏⌘, and the e↵ect of the halo background is
similar to that of a homogeneous matter potential. For
neutrinos with ⌘ � 1, the small parameter is ✏ in the
case of the derivative interaction (13), and ✏⌘ in the case
of the marginal interaction (11). Using the definitions
(27), (28), these results can be rephrased in terms of the
neutrino energy, the halo mass, and the scalar-neutrino
coupling parameter, y or ⇤5. This is done in Fig. 5,
which shows the values of y (in the dimension-four in-
teraction (11)) or ⇤5 (in the dimension-five interaction
(13)) necessary for a big halo composed of particles with
m = 10�10 eV to induce a 10% deviation in the os-
cillation probability, at a given neutrino energy and a
given halo mass. Depending on the choice of the scalar-
neutrino interaction term, the sensitivity to the halo is ei-
ther energy-independent (for y), or reaches its maximum
at E & 25 MeV (for ⇤5). Thus, neutrinos interacting
with su�ciently heavy scalar halos constrain dimension-
less couplings to be y . 10�15 and dimension-five scales
⇤5 . 105 GeV.

C. Probing the small (interior) halo

For a scalar mass m & 10�9 eV, the halo core is lo-
cated inside the Earth. Such a halo can be probed by

X0Here we take the derivative scalar-neutrino coupling,  η = 40,
X0 = πL /Losc

0 , sin2 2θ0 = 0.99, g11 = 0.5, g12 = i, g22 = 0.

ϵ = 0
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The correction due to the halo can be small and at the same time be dominated by nonadiabatic effects.
The correction gives rise to interesting features in the oscillation curve.
The magnitude of the correction is essentially energy-independent.
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FIG. 5. Left: Contours showing the value of the scalar-neutrino coupling y in (11), for a given neutrino energy E and halo mass
Mhalo, at which the relative deviation from the vacuum neutrino oscillation probability is 0.1. Right: A similar contour plot for
the suppression scale ⇤5 of the scalar-neutrino interaction (13). We assume m = 10�10 eV (big halo), and �m2

0 = 2.5⇥ 10�3

eV2. The grey shaded region depicts the experimentally excluded values of Mhalo and the vertical dashed line depicts the value
of E at which ⌘ = 1 (see eq. (28)).

neutrinos traversing the Earth, with their source and de-
tector located on opposite sides of the planet (see Fig. 6
for an illustration). This setup is typical for atmospheric
neutrinos, and we will consider oscillation parameters rel-
evant for a GeV-scale neutrino: �m

2
0 ⇡ 2.5 ⇥ 10�3 eV,

sin2 2✓0 ⇡ 0.087. Note that, depending on the neutrino
mass ordering and energy, the contribution to the Hamil-
tonian (15) generated by the Earth’s matter can signif-
icantly a↵ect atmospheric neutrino oscillations and en-
hance them resonantly (see [33] and references therein).
For simplicity, we do not consider this matter e↵ect here.
This is justified since, unlike the Earth’s matter, the res-
onant oscillations due to the halo can occur for neutrinos
in a broad range of energies, as seen in Section IVB.

First, we repeat the analysis of the perturbative cor-
rections in the adiabatic regime. Using eq. (10b) it is

�

z = L

z = 0

zr

FIG. 6. The path of a neutrino propagating through a halo
core located inside the Earth.

convenient to rewrite the parameters (27), (28) as

✏ ⇠
✓

�

10�23

◆✓
10�9 eV

m

◆5/4 ✓
Mhalo

1015 kg

◆1/2

, (35)

⌘ = 400

✓
2.5⇥ 10�3 eV2

�m
2
0

◆⇣
m

10�9 eV

⌘✓
E

1 GeV

◆
.

(36)
Here the parameter ✏ contains the amplitude of the field
f0 in the center of the halo. Next, for atmospheric neu-
trinos one clearly obtains ⌘ � 1. Additionally, mL � 1
for neutrinos traversing the Earth. This allows us to
compute the e↵ective mass-squared di↵erence �m

2
e↵ in

eq. (20) independently of the rest of the probability. Fur-
thermore, it is convenient to express �m

2
e↵ as a function

of the nadir angle ⇥ of the incoming neutrino. From
eqs. (21), (23b), (24b) and (25) we obtain

�m
2
e↵ = �m

2
0

✓
1 + 2✏2⌘2Am2

Is(⇥;m)

cos⇥

◆
, (37)

where we define

Is(⇥;m) ⌘
Z 2s

0
dx bf2(

p
x2 + 1� 2xs) , (38)

s = cos⇥, x = z/R�, and bf is the normalised halo pro-

file, bf(0) = 1. The function Is(⇥;m)/ cos⇥ is plotted in
Fig. 7 for the scalar mass m = 5⇥ 10�9 eV at which the
halo size is comparable to that of the Earth, ` ⇡ 0.5R�.
In a realistic setup, due to the limited angular and

energy resolution of a neutrino detector, one is sensitive
to the oscillation probability which is averaged over the
position of the neutrino source and the neutrino energy

Big halo: results

Values of the parameters at which the relative deviation from the vacuum oscillation probability reaches . 
The grey shaded region depicts the experimentally excluded values of , the dashed line is .
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 The previous analysis gives us the qualitative understanding of what happens in the case of small halo (  eV).m ≳ 10−9

We have in mind atmospheric neutrinos of  GeV traversing the Earth.E ≳ 1

Our parameters become
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FIG. 5. Left: Contours showing the value of the scalar-neutrino coupling y in (11), for a given neutrino energy E and halo mass
Mhalo, at which the relative deviation from the vacuum neutrino oscillation probability is 0.1. Right: A similar contour plot for
the suppression scale ⇤5 of the scalar-neutrino interaction (13). We assume m = 10�10 eV (big halo), and �m2

0 = 2.5⇥ 10�3

eV2. The grey shaded region depicts the experimentally excluded values of Mhalo and the vertical dashed line depicts the value
of E at which ⌘ = 1 (see eq. (28)).

neutrinos traversing the Earth, with their source and de-
tector located on opposite sides of the planet (see Fig. 6
for an illustration). This setup is typical for atmospheric
neutrinos, and we will consider oscillation parameters rel-
evant for a GeV-scale neutrino: �m

2
0 ⇡ 2.5 ⇥ 10�3 eV,

sin2 2✓0 ⇡ 0.087. Note that, depending on the neutrino
mass ordering and energy, the contribution to the Hamil-
tonian (15) generated by the Earth’s matter can signif-
icantly a↵ect atmospheric neutrino oscillations and en-
hance them resonantly (see [33] and references therein).
For simplicity, we do not consider this matter e↵ect here.
This is justified since, unlike the Earth’s matter, the res-
onant oscillations due to the halo can occur for neutrinos
in a broad range of energies, as seen in Section IVB.

First, we repeat the analysis of the perturbative cor-
rections in the adiabatic regime. Using eq. (10b) it is

�

z = L

z = 0

zr

FIG. 6. The path of a neutrino propagating through a halo
core located inside the Earth.

convenient to rewrite the parameters (27), (28) as

✏ ⇠
✓

�

10�23

◆✓
10�9 eV

m

◆5/4 ✓
Mhalo

1015 kg

◆1/2

, (35)

⌘ = 400

✓
2.5⇥ 10�3 eV2

�m
2
0

◆⇣
m

10�9 eV

⌘✓
E

1 GeV

◆
.

(36)
Here the parameter ✏ contains the amplitude of the field
f0 in the center of the halo. Next, for atmospheric neu-
trinos one clearly obtains ⌘ � 1. Additionally, mL � 1
for neutrinos traversing the Earth. This allows us to
compute the e↵ective mass-squared di↵erence �m

2
e↵ in

eq. (20) independently of the rest of the probability. Fur-
thermore, it is convenient to express �m

2
e↵ as a function

of the nadir angle ⇥ of the incoming neutrino. From
eqs. (21), (23b), (24b) and (25) we obtain

�m
2
e↵ = �m

2
0

✓
1 + 2✏2⌘2Am2

Is(⇥;m)

cos⇥

◆
, (37)

where we define

Is(⇥;m) ⌘
Z 2s

0
dx bf2(

p
x2 + 1� 2xs) , (38)

s = cos⇥, x = z/R�, and bf is the normalised halo pro-

file, bf(0) = 1. The function Is(⇥;m)/ cos⇥ is plotted in
Fig. 7 for the scalar mass m = 5⇥ 10�9 eV at which the
halo size is comparable to that of the Earth, ` ⇡ 0.5R�.
In a realistic setup, due to the limited angular and

energy resolution of a neutrino detector, one is sensitive
to the oscillation probability which is averaged over the
position of the neutrino source and the neutrino energy

The path of a neutrino 
propagating through a halo 

core located inside the Earth.

 Perturbation theory is straightforward, but is limited to .ϵ ≲ η−2

  Visible distortions in neutrino oscillations are from the nonadiabatic effects.⇒

where now  — the amplitude of the halo at its centre.β ∼ f (0)

Probing the interior halo
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 One computes numerically the neutrino wavefunction as it travels through the halo.

Here is the typical result for the survival probability after traversing the Earth (neglecting the MSW effect):

vacuum oscillations

 — the effect is only visible at small , due to 
the fact that  at this value of .
ϵ = 0.1 Θ

ℓ/Losc
0 ∼ 10 m

 — the effect is visible at all .ϵ = 0.5 Θ

 — the survival probability tends to  (grey 
dashed line).
ϵ = 2.0 1/2

8

FIG. 7. The angle-dependent part of the correction in (37)
to the neutrino mass-squared di↵erence as a function of the
nadir angle of the incoming neutrino, for m = 5⇥ 10�9 eV.

band �E � m. The averaged probability can be written
as

hPaai�,L,�E = 1� 1

2
sin2 2✓e↵ . (39)

Using eqs. (20), (23a), (24a) and (25), we obtain the
e↵ective mixing angle,

✓e↵ = ✓0 + 2✏2�⌘
2(A✓2 +A2

✓1 cot 2✓0) , (40)

where ✏� = ✏f�/f0, and f� is the amplitude of the halo
at the Earth’s surface. Clearly, the correction to the
mixing angle is additionally suppressed by a factor f2

�/f
2
0

compared to the mass-squared di↵erence (37).
As discussed in Section IVB, the halo time-variation

severely limits the applicability of the adiabatic approx-
imation for neutrinos with ⌘ � 1, and the corrections
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FIG. 8. The survival probability of the neutrino traversing the
halo inside the Earth, averaged over the halo phase, for several
values of ✏ (35). We assume the derivative scalar coupling
(13), m = 3⇥10�9 eV, E = 1 GeV, and the vacuum oscillation
parameters �m2

0 ⇡ 2.5 ⇥ 10�3 eV, sin2 2✓0 ⇡ 0.087. When
✏ = 0.1 (black line), the deviation from the vacuum oscillation
(green, dot-dashed line) is only sizeable at small nadir angles
⇥ corresponding to the neutrino traversing the halo core (see
fig. 6). When ✏ = 0.5 (thin, red line), the deviation is visible
at all ⇥. For even higher values, ✏ = 2 (thin, blue line), the
probability tends to 1/2 (gray, dashed line). All probabilities
are plotted with the step �⇥ = 0.005.

FIG. 9. The survival probability of the neutrino traversing
the halo inside the Earth, averaged over the halo phase and
incoming angle, as a function of ✏ (eq. (35)). We assume the
derivative scalar coupling (13), m = 3⇥10�9 eV, E = 1 GeV,
and the vacuum oscillation parameters �m2

0 ⇡ 2.5⇥10�3 eV,
sin2 2✓0 ⇡ 0.087. As ✏ grows, the probability reduces from its
vacuum value to 1/2 (gray dashed lines).

(37), (40) are only valid for ✏ ⌧ ⌘
�2, which, by eq. (36),

limits the deviation from vacuum oscillation of neutrino
with E ⇠ 1 GeV to be . 1%. When ✏ & ⌘

�2, one needs
to solve eq. (14) numerically. From the results of the
previous section one can nevertheless draw a qualitative
picture of what happens at larger values of ✏. Namely,
the correction to the oscillation probability due to the
halo is expected to be small for all incoming neutrinos
until the amplitude of the field in the halo center is such
that ✏ ⇠ ⌘

�1 (for the interaction (11)) or ✏ ⇠ 1 (for
the interaction (13)). Furthermore, if the halo mass in-
creases, the largest value of the nadir angle ⇥ at which
the oscillation probability is significantly a↵ected by the
halo also increases.

As an illustration, Fig. 8 shows an example of the nu-
merical calculation of the survival probability, averaged
according to eq. (26), as a function of ⇥, where, for con-
creteness, we choose the interaction (13). We also take
the scalar field mass m = 3⇥ 10�9 eV, corresponding to
the halo size close to the size of the Earth, ` ⇡ 0.65R�.
We see indeed that the magnitude of the deviation from
the vacuum probability is controlled by the parameter ✏.
For ✏ ⌧ 1, the e↵ect may only be visible at small ⇥, when
the neutrino passes through the core of the halo, owing
to the fact that `/Losc

0 ⇠ 10 for ` ⇠ R�. In the opposite
regime, ✏ � 1, the probability tends to 1/2 irrespective
of the angle.

Fig. 9 shows the survival probability averaged over ⇥,
for the same parameters as in Fig. 8. Even though there
is no longer sensitivity to the direction of the incoming
neutrino, one still obtains a deviation from the vacuum
probability. Since in our example ` ⇠ R�, the deviation
becomes large for ✏ & 1.

What happens at much larger values of m correspond-
ing to much smaller halos? Assume that the neutrino
detector has a certain angular resolution ⇥res. By smear-
ing (35) over ⇥res one can define an e↵ective expansion

Here we take the derivative scalar-neutrino coupling,  eV,  GeV,
 eV , . The step is .

m = 3 × 10−9 E = 1
Δm2

0 = 2.5 × 10−3 2 sin2 2θ0 = 0.087 ΔΘ = 0.005

Probing the interior halo
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ϵ ↦ ϵeff = Θ−1
res ∫

Θres

0
dΘ ϵ(Θ) , ϵ(Θ) =

β
m

f (R⊕ sin Θ)
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Here is the typical result for the survival probability after traversing the Earth (neglecting the MSW effect):
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the fact that  at this value of .
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 — the survival probability tends to  (grey 
dashed line).
ϵ = 2.0 1/2
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FIG. 7. The angle-dependent part of the correction in (37)
to the neutrino mass-squared di↵erence as a function of the
nadir angle of the incoming neutrino, for m = 5⇥ 10�9 eV.

band �E � m. The averaged probability can be written
as

hPaai�,L,�E = 1� 1

2
sin2 2✓e↵ . (39)

Using eqs. (20), (23a), (24a) and (25), we obtain the
e↵ective mixing angle,

✓e↵ = ✓0 + 2✏2�⌘
2(A✓2 +A2

✓1 cot 2✓0) , (40)

where ✏� = ✏f�/f0, and f� is the amplitude of the halo
at the Earth’s surface. Clearly, the correction to the
mixing angle is additionally suppressed by a factor f2

�/f
2
0

compared to the mass-squared di↵erence (37).
As discussed in Section IVB, the halo time-variation

severely limits the applicability of the adiabatic approx-
imation for neutrinos with ⌘ � 1, and the corrections
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FIG. 8. The survival probability of the neutrino traversing the
halo inside the Earth, averaged over the halo phase, for several
values of ✏ (35). We assume the derivative scalar coupling
(13), m = 3⇥10�9 eV, E = 1 GeV, and the vacuum oscillation
parameters �m2

0 ⇡ 2.5 ⇥ 10�3 eV, sin2 2✓0 ⇡ 0.087. When
✏ = 0.1 (black line), the deviation from the vacuum oscillation
(green, dot-dashed line) is only sizeable at small nadir angles
⇥ corresponding to the neutrino traversing the halo core (see
fig. 6). When ✏ = 0.5 (thin, red line), the deviation is visible
at all ⇥. For even higher values, ✏ = 2 (thin, blue line), the
probability tends to 1/2 (gray, dashed line). All probabilities
are plotted with the step �⇥ = 0.005.

FIG. 9. The survival probability of the neutrino traversing
the halo inside the Earth, averaged over the halo phase and
incoming angle, as a function of ✏ (eq. (35)). We assume the
derivative scalar coupling (13), m = 3⇥10�9 eV, E = 1 GeV,
and the vacuum oscillation parameters �m2

0 ⇡ 2.5⇥10�3 eV,
sin2 2✓0 ⇡ 0.087. As ✏ grows, the probability reduces from its
vacuum value to 1/2 (gray dashed lines).

(37), (40) are only valid for ✏ ⌧ ⌘
�2, which, by eq. (36),

limits the deviation from vacuum oscillation of neutrino
with E ⇠ 1 GeV to be . 1%. When ✏ & ⌘

�2, one needs
to solve eq. (14) numerically. From the results of the
previous section one can nevertheless draw a qualitative
picture of what happens at larger values of ✏. Namely,
the correction to the oscillation probability due to the
halo is expected to be small for all incoming neutrinos
until the amplitude of the field in the halo center is such
that ✏ ⇠ ⌘

�1 (for the interaction (11)) or ✏ ⇠ 1 (for
the interaction (13)). Furthermore, if the halo mass in-
creases, the largest value of the nadir angle ⇥ at which
the oscillation probability is significantly a↵ected by the
halo also increases.

As an illustration, Fig. 8 shows an example of the nu-
merical calculation of the survival probability, averaged
according to eq. (26), as a function of ⇥, where, for con-
creteness, we choose the interaction (13). We also take
the scalar field mass m = 3⇥ 10�9 eV, corresponding to
the halo size close to the size of the Earth, ` ⇡ 0.65R�.
We see indeed that the magnitude of the deviation from
the vacuum probability is controlled by the parameter ✏.
For ✏ ⌧ 1, the e↵ect may only be visible at small ⇥, when
the neutrino passes through the core of the halo, owing
to the fact that `/Losc

0 ⇠ 10 for ` ⇠ R�. In the opposite
regime, ✏ � 1, the probability tends to 1/2 irrespective
of the angle.

Fig. 9 shows the survival probability averaged over ⇥,
for the same parameters as in Fig. 8. Even though there
is no longer sensitivity to the direction of the incoming
neutrino, one still obtains a deviation from the vacuum
probability. Since in our example ` ⇠ R�, the deviation
becomes large for ✏ & 1.

What happens at much larger values of m correspond-
ing to much smaller halos? Assume that the neutrino
detector has a certain angular resolution ⇥res. By smear-
ing (35) over ⇥res one can define an e↵ective expansion

Here we take the derivative scalar-neutrino coupling,  eV,  GeV,
 eV , . The step is .

m = 3 × 10−9 E = 1
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0 = 2.5 × 10−3 2 sin2 2θ0 = 0.087 ΔΘ = 0.005

 What happens at  eV corresponding to ?m ≫ 10−9 ℓ ≪ R⊕

The sensitivity goes down due to the limited angular resolution 
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But the effect is still there.
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nadir angle of the incoming neutrino, for m = 5⇥ 10�9 eV.

band �E � m. The averaged probability can be written
as

hPaai�,L,�E = 1� 1

2
sin2 2✓e↵ . (39)

Using eqs. (20), (23a), (24a) and (25), we obtain the
e↵ective mixing angle,

✓e↵ = ✓0 + 2✏2�⌘
2(A✓2 +A2

✓1 cot 2✓0) , (40)

where ✏� = ✏f�/f0, and f� is the amplitude of the halo
at the Earth’s surface. Clearly, the correction to the
mixing angle is additionally suppressed by a factor f2
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compared to the mass-squared di↵erence (37).
As discussed in Section IVB, the halo time-variation
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FIG. 8. The survival probability of the neutrino traversing the
halo inside the Earth, averaged over the halo phase, for several
values of ✏ (35). We assume the derivative scalar coupling
(13), m = 3⇥10�9 eV, E = 1 GeV, and the vacuum oscillation
parameters �m2

0 ⇡ 2.5 ⇥ 10�3 eV, sin2 2✓0 ⇡ 0.087. When
✏ = 0.1 (black line), the deviation from the vacuum oscillation
(green, dot-dashed line) is only sizeable at small nadir angles
⇥ corresponding to the neutrino traversing the halo core (see
fig. 6). When ✏ = 0.5 (thin, red line), the deviation is visible
at all ⇥. For even higher values, ✏ = 2 (thin, blue line), the
probability tends to 1/2 (gray, dashed line). All probabilities
are plotted with the step �⇥ = 0.005.
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FIG. 9. The survival probability of the neutrino traversing
the halo inside the Earth, averaged over the halo phase and
incoming angle, as a function of ✏ (eq. (35)). We assume the
derivative scalar coupling (13), m = 3⇥10�9 eV, E = 1 GeV,
and the vacuum oscillation parameters �m2

0 ⇡ 2.5⇥10�3 eV,
sin2 2✓0 ⇡ 0.087. As ✏ grows, the probability reduces from its
vacuum value to 1/2 (gray dashed lines).

(37), (40) are only valid for ✏ ⌧ ⌘
�2, which, by eq. (36),

limits the deviation from vacuum oscillation of neutrino
with E ⇠ 1 GeV to be . 1%. When ✏ & ⌘

�2, one needs
to solve eq. (14) numerically. From the results of the
previous section one can nevertheless draw a qualitative
picture of what happens at larger values of ✏. Namely,
the correction to the oscillation probability due to the
halo is expected to be small for all incoming neutrinos
until the amplitude of the field in the halo center is such
that ✏ ⇠ ⌘

�1 (for the interaction (11)) or ✏ ⇠ 1 (for
the interaction (13)). Furthermore, if the halo mass in-
creases, the largest value of the nadir angle ⇥ at which
the oscillation probability is significantly a↵ected by the
halo also increases.

As an illustration, Fig. 8 shows an example of the nu-
merical calculation of the survival probability, averaged
according to eq. (26), as a function of ⇥, where, for con-
creteness, we choose the interaction (13). We also take
the scalar field mass m = 3⇥ 10�9 eV, corresponding to
the halo size close to the size of the Earth, ` ⇡ 0.65R�.
We see indeed that the magnitude of the deviation from
the vacuum probability is controlled by the parameter ✏.
For ✏ ⌧ 1, the e↵ect may only be visible at small ⇥, when
the neutrino passes through the core of the halo, owing
to the fact that `/Losc

0 ⇠ 10 for ` ⇠ R�. In the opposite
regime, ✏ � 1, the probability tends to 1/2 irrespective
of the angle.

Fig. 9 shows the survival probability averaged over ⇥,
for the same parameters as in Fig. 8. Even though there
is no longer sensitivity to the direction of the incoming
neutrino, one still obtains a deviation from the vacuum
probability. Since in our example ` ⇠ R�, the deviation
becomes large for ✏ & 1.

What happens at much larger values of m correspond-
ing to much smaller halos? Assume that the neutrino
detector has a certain angular resolution ⇥res. By smear-
ing (35) over ⇥res one can define an e↵ective expansion

The survival probability averaged over the nadir angle  of 
the incoming neutrino, . The parameters are the 

same as on the previous plot.
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FIG. 10. Left: Contours showing the values of the scalar-neutrino coupling y in (11) for a given scalar field mass m & 10�9 eV
(small halo) and halo mass Mhalo, at which the relative deviation from the vacuum neutrino oscillation probability is 0.1. Right:
A similar contour plot for the suppression scale ⇤5 of the scalar-neutrino interaction (13). We assume the angular resolution of
the neutrino detector ⇥res = 30�, the neutrino energy E = 1 GeV, and �m2

0 = 2.5⇥ 10�3 eV2. The grey shaded region depicts
the values of Mhalo > 0.1M�.

parameter:

✏e↵ = ⇥�1
res

Z ⇥res

0
d⇥ ✏(⇥) , (41)

where

✏(⇥) =
�

m
f(R� sin⇥) , (42)

corresponds to the maximal amplitude of the halo probed
by the neutrino with the angle ⇥. At a given m and
E, one can infer the halo mass corresponding to, e.g.,
✏e↵⌘ = 0.1 (for the interaction (11)) or ✏e↵ = 0.1 (for the
interaction (13)). The result is shown in Fig. 10, where,
for concreteness, we take ⇥res = 30�. We see that the
absence of the constraint on Mhalo from the lunar laser
ranging allows us to probe much lower values of y (or
higher values of ⇤5). In particular, for m ⇠ 10�9 eV,
couplings as small as 10�21 and scales as large as 1010

GeV can be probed. However, the sensitivity diminishes
as the scalar field mass increases since this corresponds
to decreasing the halo size, which then contributes less
to the integral in eq. (41). Also, changing ⇥res leads to
a proportional change in the sensitivity.

V. LOCAL VECTOR HALO

A. Nonrelativistic vector soliton

In this section we repeat the analysis in the previous
sections for the case when the halo is made of massive
vector particles, such as a dark photon. Coupling the
U(1) vector field to the neutrino current leads to new

e↵ects in the neutrino oscillations due to the polarisa-
tion [22, 23, 31]. We again assume the Earth hosts the
halo, but this time arising from a U(1) massive vec-
tor field Aµ. To obtain a soliton solution, we consider
radially-polarised, spherically-symmetric configurations
described by the ansatz (see also [39])

At(r, t) = cu(r) cos!t , Ar(r, t) = v(r) sin!t , (43)

and A✓ = A� = 0. In the gravitational background (1),
the equations of motion for the components u, v are

!v(r)� cu
0(r) =

m
2
c
4

!
N(r)v(r) , (44a)

1

r2

d

dr
(r2(cu0(r)� !v(r))) = m

2
c
3 u(r)

N(r)
, (44b)

where m is the mass of the vector boson. These equa-
tions are analogous to those appearing in the studies of
self-gravitating, relativistic, (complex) vector field con-
figurations – Proca stars [40]. The important di↵erence
is, however, that in our case the function N(r) is fixed
by the background metric.
Since the equation of motion does not contain the sec-

ond time derivative of At, the dynamical degree of free-
dom is associated with the function v(r). Nevertheless,
it is convenient to write eq. (44) as a di↵erential equation
on u(r). Taking the nonrelativistic limit ! = mc

2 + E,
with |E| ⌧ mc

2, and using the units (4), we obtain, to
leading order in c,

� 1

x2

d

dx

✓
x
2 du

dx

◆
+

M�̃0

M�̃� E
du

dx
+ 2(M�̃� E)u = 0 ,

(45a)

v =
mR�

2(E �M�̃)

du

dx
, (45b)

Probing the interior halo: results

Values of the parameters at which the relative deviation from the vacuum oscillation probability reaches , for  eV. 
The grey shaded region depicts the values of . We take  eV ,  GeV, and .

0.1 m ≳ 10−9

Mhalo > 0.1M⊕ Δm2
0 = 3.5 ⋅ 10−3 2 E = 1 Θres = 30∘
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Discussion

 We repeated the analysis for the (radially-polarised) local vector halo coupled to the neutrino current.

 We worked in the approximate 2-flavour scheme. It is interesting to do 3-flavour oscillations.

 It would be interesting to understand better the local halo formation.

 It is intriguing that a local dark matter halo could exist surrounding the Earth. 

Possible interactions with neutrinos provide a novel way to search for the dark 
matter particle in neutrino oscillation experiments.


