Multi-photon decays of the Higgs boson at the LHC

Samuel D. Lane

w/ Hye-Sung Lee & Ian M. Lewis

arXiv: 2305.00013

Pheno 2023

1971

Outline

- Introduction and Motivation
- Model
- Multi-photon objects
- Results
- Summary & Conclusion

Introduction

SM is "complete"

• SM cannot explain dark matter, matter-antimatter

asymmetry,...

Dark Photons

ALPS

Dark axion portal

Connect ALP and dark photon

Dark higgs, Dark photon, ALP, VLFs

K. Kaneta, H.-S. Lee, and S. Yun. 1611.01466

Model

Couplings

- Higgs Dark Photon coupling
- Higgs axion couplings
- ALP-photon-photon
- ALP-photon-dark photon
- Photons are 'clean'
- Go look for additional photon signals at LHC

Some Signals

Some candidate signals in the dark axion portal

P. Draper and D. McKeen 1204.1061,

A. Chakraborty et al. 1707.07084,

B. Sheff et al. 2008.10568,

G. Cacciapaglia et al. 2210.01826, and many many more

Photon Jets

Light particles get large boost

Decay products become collimated

Apparent Landau-Yang Violation

Multi-Photon Objects

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} \qquad \eta = \frac{1}{2} \ln \frac{E + p_Z}{E - p_Z}$$

Well collimated photons end up in same detector location

Appear as a single photon

$$\Delta R < 0.04$$

Photon Jets

Sets of photons or photon-jets that have intermediate separation

$$0.04 < \Delta R < 0.4$$
 ξ Jets

B. Sheff et al. 2008.10568

Use Isolated Photons to reduce QCD backgrounds

$$\Delta R > 0.4$$
 Isolated Photons

Results

$$BR(h \rightarrow \gamma_d \gamma_d \rightarrow a \gamma a \gamma \rightarrow 6 \gamma \rightarrow n \gamma_{iso} + m \xi)$$
1. Truth level events $\{\gamma\}$

$$Merge \ \gamma\text{-Jets} \qquad \Delta R < 0.04$$
2. Observable Photons $\{\gamma_{\text{obs}}\}$

$$Isolate \ \gamma \qquad \Delta R > 0.4$$

$$3. Isolated Photons $\{\gamma_{\text{iso}}, \xi\}$$$

 $Prob(6\gamma \to n\gamma_{iso} + m\xi) = \frac{BR(h \to \gamma_D\gamma_D \to a\gamma a\gamma \to 6\gamma \to n\gamma_{iso} + m\xi)}{BR(h \to \gamma_D\gamma_D)BR^2(\gamma_D \to a\gamma)BR^2(a \to \gamma\gamma)}$

 m_a (GeV)

Estimated Trigger Efficiencies

Results Diphoton

Results Four Photon

$$BR(h \to 4\gamma) = BR(h \to \gamma_D \gamma_D) Prob(6\gamma \to 4\gamma_{iso})$$

Results Continued

Summary & Conclusion

- The DAP introduces a six photon Higgs resonance.
- We can place good constraints using the two and four photon categories.
- Could constrain other regions by doing appropriate searches
- The pure six photon signal has a chance to be seen

Questions?

Backup

Decay Lengths

Axion Constraints

ALP-photon-dark photon

ALP-photon-photon

J.Phys.G 50 (2023) 3, 030501

Ann.Rev.Nucl.Part.Sci. 71 (2021) 279-313

Higgs Constraints

Lagrangian

Relevant couplings

$$\mathcal{L}_{\text{kinetic+mass}} = -\frac{1}{4} F_D^{\mu\nu} F_{D\mu\nu} + \frac{1}{2} m_{\gamma_D}^2 \gamma_D^{\mu} \gamma_{D\mu} + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \frac{1}{2} m_a^2 a^2,$$

$$\mathcal{L}_{\text{portal}} = \frac{G_{a\gamma\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} + \frac{G_{a\gamma\gamma_D}}{2} a F_D^{\mu\nu} \tilde{F}_{\mu\nu} + \frac{G_{a\gamma_D\gamma_D}}{4} a F_D^{\mu\nu} \tilde{F}_{D\mu\nu} + \frac{\lambda_{h\gamma_D\gamma_D}}{2} h \gamma_D^{\mu} \gamma_{D\mu}$$

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{kinetic+mass}} + \mathcal{L}_{\text{portal}}$$

Some Other Signals

Some Other Signals

Transverse Momentum Cuts

Channel	ATLAS p_T Requirements
1γ	$p_{1,T} > 150 \text{ GeV } [94]$
2γ	$p_{1,T} > 35 \text{ GeV and } p_{2,T} > 25 \text{ GeV } [24]$
3γ	$p_{1,T} > 15 \text{ GeV}, p_{2,T} > 15 \text{GeV}, \text{ and } p_{3,T} > 15 \text{ GeV} [95]$
4γ	$p_{1,T} > 30 \text{ GeV}, p_{2,T} > 18 \text{ GeV}, p_{3,T} > 15 \text{ GeV}, \text{ and } p_{4,T} > 15 \text{ GeV}$ [95]
5γ	$p_{i,T} > 15 \text{ GeV } (i = 1, 2, 3, 4, 5)$
6γ	$p_{i,T} > 15 \text{ GeV } (i = 1, 2, 3, 4, 5, 6)$
Channel	CMS p_T Requirements
1γ	$p_{1,T} > 145 \text{ GeV } [98]$
2γ	$p_{1,T} > 30 \text{ GeV and } p_{2,T} > 18 \text{ GeV } [30]$
3γ	$p_{1,T} > 15 \text{ GeV}, p_{2,T} > 15 \text{ GeV}, \text{ and } p_{3,T} > 15 \text{ GeV} [95]$
4γ	$p_{1,T} > 30 \text{ GeV}, p_{2,T} > 18 \text{ GeV}, p_{3,T} > 15 \text{ GeV}, \text{ and } p_{4,T} > 15 \text{ GeV}$ [27]
5γ	$p_{i,T} > 15 \text{ GeV } (i = 1, 2, 3, 4, 5)$
6γ	$p_{i,T} > 15 \text{ GeV } (i = 1, 2, 3, 4, 5, 6)$