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Motivation

* Precision measurements need precise PDFs

* PDF fitting groups have to contend with tension in data
« See plenary talk by C.-P. Yuan or arXiv:1905.0695
« Many strategies to deal with this: For example, the use of tolerance (Ay? = T?)
* This talk will describe the Gaussian Mixture Model (GMM) and how it
can be applied to both

 finding inconsistencies
« as well as provide a robust statistical model to determine uncertainties
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What is the Gaussian Mixture Model?

Widely used an unsupervised machine learning technique
* Could be used to classify PDF data

e Class of Finite Mixture Models

* https://doi.org/10.1146/annurev-statistics-031017-100325

* Widely used in astronomy and astrophysics to distinguish between different
sources in the sky

* First proposed by Karl Pearson (1894) — to study characteristics of a population of
crabs

* Focus of this talk: How can this machine learning technique be used as a
statistical model for uncertainties in PDFs?
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QOutline

Motivation for GMM use in PDFs ~/
Description of use of GMM in a simple 1-D example

Demonstrate idea with a toy model of PDFs

Summary
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25¢ /™
Measuring Mass (Weight) PHY-101 Lab 20 7/ \
157
 Measure mass of W-boson 0
« Repeat measurement several times
- Minimize log-likelihood or loss function g
° XZ — Zl(”_—?)z 0 80.30 80.32 80.34 80.36 80.38 80.40 86.22
g my (GeV)

o [ = Hi \/ﬁdi
 Determine best-fit value
 my =u=280.36+%0.016GeV

ATLAS-CONF-2023-004
Pheno-23  Kirtimaan Mohan Manufactured by ATLAS a
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Measuring Mass (Weight) PHY-101 Lab

Improve precision: Repeat measurements
with more_precise balance CDF science 376 (2022)

40- ]

30 _
‘[IATLAS

20+ [l CDF -

o- | '
80.30 80.35 80.40 80.45
K = mw (GeV)
CDF __
Manufactured by CDF my, © =80.433 £ 0.009 GeV' Manufactured by ATLAS
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https://inspirehep.net/literature/2064224

Al L,
(& MICHIGAN STATE UNIVERSITY

Measuring Mass (Weight) PHY-101 Lab

 How should we combine these two discrepant measurements to give one
value of mass?

* Attempt #1: Let’s repeat earlier exercise 49!
« Minimize loss function
. 42 =y, on? 307y ATLAS
LT =00y o2 L
* my, = 80.415 + 0.011 GeV 20" m Combined / \\
* 20 band does not cover both means 105 / \
« What should we do? /
* Usual proposal 0h :
80.30 80.35 80.40 80.45
o Increase tolerance Ay? = T4 T > 1 my (GeV)

« Does not provide a faithful representation of the probability distribution of m,,
drawn from our sample of experiments Pheno-23  Kirtimaan Mohan °
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Shortcomings of our usual proposal
 Why didn’t our usual approach reproduce the probability distribution
function for my, work?

* In this simple example

« We ignored individual likelihoods from each experiment

 We minimized the y? which is
* Just like taking the weighted mean

.............

And adding errors in quadrature 40 -
Then defining a new gaussian likelihood (green)

30" 7 ATLAS
@I CDF
a | Combined

Starting assumption is that my,, likelihood is a single gaussian

* Good assumption if data is consistent 20

e Attempt #2: Combine likelihoods 10

ot 1
Pheno-23 Kirtimaan Mohan 80.30 80.35 80.40 7 80.45
my, (GeV)



Combining Likelihoods — Gaussian Mixture Model
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[(#—xi)z]
el 9

N =
V2mo;

Start by parameterizing the likelihood as a 7(Y10) = [ [ w(v;. Ay;10) =
j=1

sum of Gaussians

In this simple example we know there are two

Npt

Npt K

j=1 i=1
0<wr <1 and

[1D_ wiN (s, Ayslb),

Zwk: 1,
k

Gaussians, i.e. K= 2

In general, the value of K needs to be determined —
discussed later

Introduced a new parameter wy, - weights

Constraints on wy; ensures proper normalization and
interpretation as a probability distribution function

Proxy for our confidence in each experiment
For simplicity we’ll use equal weights here
In reality — it is an additional fit parameter
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Determine mean and variance for GMM

Npt Npt K
7(Y16) = [ m(u; A1) = [ D wiV (w;, Ay;16:),
K j=1 j=1 =1
Mean E[f] = szﬂi-' 0<wr <1 and Zwk =1,
i=1 k
COVGMM = ;w,- COVGMM,i =+ ;wl(E[G] — 91)2 20 _ _f
(L (0500 N . Ayl 7| fE 7 —0 +0 ]
- ;w<; ij.’( 90 ) (43, Ay;10) ) +;%(E[O] - 15 : : ll. . ]
Weighted sum of covariances Difference : g . 5
of each Gaussian between 10+ /? \ . - .
Gaussians / . \ . : ]
. / | \ . ]
) . 5r /| \ " . ]
Here we use the variance as an estimator for _ / . \\ . : ]
the standard error. : S = ﬁl_‘/ 5 Xq:
Alternatively, we could use the Observed 0 80.30 80.35 80.40 80.45
Fisher Information Matrix Pheno-23  Kirtimaan Mohan
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Determine mean and variance for GMM

K
Mean E[f] = szﬂ}.'

coveMM = E W; COVGMM,i —l—E w; ( 0)2

= 1 (dy]( ))2N(y1 Ay;|b:) )

= w; +

; (Z Ay \ 06, (5. Ay |6)

Weighted sum of covariances
of each Gaussian

Caveat about green curve: because we are

used to it, it is possible to model this as a

single Gaussian (green) — but we must be
careful - it is not a faithful representation of

the likelihood.

Npt Npt K
7(Y10) = ] m(v;, Aysl0) = [] D wilV (v, Ay;16:)
j=1 j=1i=1
0<wr <1 and Zwk—l
k
D GMM I I T
K 120 ]
> wiElY] - 0:)*. . Single Gaussian A
i=1 t U +0
Difference 15 3 ] . . 1
(Ej)etwe.en [ U —ao :4\\ E E 1
aussians | 4. / . V.\ . ]
I . . '
5- //// \ : \
[ : N\ : .
ot A | 3 N 1 N
80.30 80.35 0.40 80.45
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Application of GMM to a toy model of PDFs
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A toy model of PDFs with inconsistent data

27 = truth #1

—— truth #2

“truth”  g() = ap 2™ (1 — x)*2e™* (1 + xe™)™® o] T
Parameters of model: {a,, a;, a,, as, a,, az}
Pseudo-data generation
Central value  gp(x) = (1 +r x Ag(z) )g () 0.0-10'-5 T 10
o B [Raish i
. Ag(ﬂf) = 115 — truth #2 |
Cmoettainty g(x) s :z::::;l
Npt |ap a1 as a3 | ag as E | hill hlriﬂil II]
pseudo-data #1 | 50 [ 30 05 24 43|24 -3.0 RfHfim ol
pseudo-data #2 | 50 | 30 0.5 24 43]2.6 -2.8 0.0 [ /
Inconsistent Pseudo-data generated by ] [ , |

10~° 10 1072 1072 107! 10°

starting with different values of a, & a-



Fits to pseudo-data *- %: (“;—5@)2 |

pPDF

fits  pseudo-data | best-fit ay best-fit a5 x%;/Npt  X%o/Npt
LS-A #1 2.32 -3.22 0.88 6.55
LS-B # 2 2.63 -2.73 7.00 1.02
LS-C # 1 and # 2 2.48 -2.94 2.27 2.56
truth #1 2.4 -3.0 - -
truth # 2 2.6 -2.8 - -
-2.4 T T T
LS-C in replica set 4
LS-A in replica set
—26-4 -+ LS-Binreplicaset
x truth #1
x truth #2
—2.84 # LS-Cbestfit
[ LS-Clo
[ LS-C3-0
& —3.0
LS-A: Data set 1 only
-3.2
34 LS-C: Combines all
{ data
-3.6 — . .
1.9 2.0 2.1 2.2 2.4 2.6 2.8

$\\|r
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------ LS-C in replica set
...... LS-Ain replica set
------ LS-B in replica set

LS-C in Hessian set

15

1.0

/

0.5

..//

L AETY LS-A in replica set

T T
...... LS-C in replica set

------ LS-B in replica set
LS-C in Hessian set

10-5 104 1073

1072

10°




Fits to pseudo-data using the GMM [ wcrmom
. . . . 1.15 - -CIn e.55|anse
GMM uncertainty ellipse spans both replica sets. Unlike |~ o6 € Hessian, . CT tol.
usual y? method 0
Axis of ellipse is different — covers uncertainties from 0%
individual data sets § 1001
Tolerance criteria both over and underestimates 0,95 : :
P . . . Comparison with
uncertainties in different regions 00| | CTEQ-TEA criteria: [
_ wssl | Ax2=37=68%C.L.
287 0.80 T T T T T
G M M 107° b 1073 1072 107! 100
1.20 =
Yy — o T L5-a n replcn st
10_ 1157 LS-B in replica set
l 110+ LS-C in Hessian set
il ' _
& =307 3 SG-C in replica set 1.05 - LS-A i
< SG-A in replica set ' i
ﬂ% SG-B in replica set S 100
35 ; [ + SG-C bestfit e
' -y‘" + SG-C Hessian CT tol. EV set-1 0.95 4
SG-C Hessian CT tol. EV set-2
. 1 SG-Clo 0.90 4
34478 - [ SG-C 3-0
E‘} — GMM 10 0.85
2f3 214 2f5 2r6 2f7 2j8 0.80 T T T T T T
10-5 104 103 1072 101! 10°
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2.51 — truth #5
I pData #7
2.0
1.5
&
%
1.0
0.5 4 il
0.0 4
T T T T T T'l
1075 107 1072 1072 107! 10°
259 — truth #6
I pData#8
2.0
154
&
a
3
104
05 -
0.0
10— 10-¢ 10 102 10~ 100

paur
G

T

x  truth #7

—2.84 + SG-C best-fit

+ GMM best-fit
GMM 1st Gauss. best-fit

< GMM 2nd Gauss. best-fit

=2.99 3 SG-C 1-0

[ SG-C 1.5-0

=21 GMM 1-0

GMM 1st Gauss.

as

%

7

-3.01 /ﬁ
GMM 2nd Gauss.
T
—=3.11 ‘
-3.24 | |
2,275 2,300 2.325 2.350 2.375 2.400 2.425 2.450
as
X truth #8
—2.84 + SG-C best-fit
+ GMM best-fit
GMM 1st Gauss. best-fit
< GMM 2nd Gauss. best-fit A?
=299 3 SG-C 1-0 1
[ SG-C 1.5-0
£ GMM 1-0
& GMM 1st Gauss.
=3.01 " 2
i GMM 2nd Gauss. 74
-3.1
t/
-3.2
2.30 2.35 2.40 2.45
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GMM reduces to the y? likelihood (K= 1), when data is cons
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How many Gaussians? How do we determine K?

‘Kzl K=2 |K=3 K=14

Akaike Information Criterion (AIC) ' nel AIC 1 1020 K2036 1019 1379
(Akaike, 1974) Strong tension BIC | -106.1 }-211.2 |-206.4 -203.2
Bayesian Information Criterion (BIC) Nptzlgo —jif;%L ;i% -11(19[-16 -13952 -1892-6
-A461— Weak tension case- mad TLo -l e
Schwarz (Ann Stat 1978, 6:461-464) oo to e pic Loso l 230 103 155
uncertainty Np=100 —logL | -145 | -155 -15.7 -15.7
case-3  AIC | 103 -220.2 -2128 -205.0
AIC = Nparm logNy — 2logL|,_;. BIC | -2232 -227.8 -2243 -220.3
N..=100 —logL | -113.6 -117.9 -117.9 -118.1
BIC = 2N, .. —2logL| .. pt &
parm 08 |0=0 — case-d  AIC N-117.8 1-1000 -102.1 943
g tuened | B e | eas 28 628
. pt=2 —log -62. -62. -62. -62.
Nparm = 2K + (K —1). : case-5  AIC 1-169.3 | -161.5 -153.6 -145.8
Coffllilcsttf;ti(;nNo BIC [-173.1 | -169.1 -165.1 -161.1
N.,=50 —logL | -88.6 | -88.6 -88.6 -88.6
Use the lowest values of AIC & pt—" %%
. Npt Npt K
BIC to determine the best value of ~(Y1]3) = Hﬂ(y-,Ay'lg) _ HZwW(y-, Ayil0:),
K N . J J J J
and avoids over-fitting. et =1 =1

0<wp,<1 and Zwkzl,
k


10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136

Summary & Outlook
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Proposed the use of GMM, a well-known machine learning classification tool, as a statistical
model to estimate uncertainty in PDF fits

* Can also be used to classify PDF fitting data — unsupervised machine learning task

Provides a way to faithfully combine likelihoods from different experiments as well as
represent the likelihood of the PDF fit.

* The usual tolerance method overestimates errors in some regions and underestimates
in others

Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF
uncertainty estimation
* Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn

Presented the frequentist approach in this talk. Extends to the Bayesian approach as well.

Here | only showed tension due to experimental inconsistencies, but this also applies to
tension resulting from theoretical inadequacies.

Next steps: Apply to real data and pdf fit.
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