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Motivation

• Precision measurements need precise PDFs
• PDF fitting groups have to contend with tension in data

• See plenary talk by C.-P. Yuan or arXiv:1905.0695
• Many strategies to deal with this: For example, the use of tolerance Δ𝜒! = 𝑇!

• This talk will describe the Gaussian Mixture Model (GMM) and how it 
can be applied to both 
• finding inconsistencies 
• as well as provide a robust statistical model to determine uncertainties
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https://indico.cern.ch/event/1218225/contributions/5392124/
https://arxiv.org/pdf/1905.06957.pdf


What is the Gaussian Mixture Model?

• Widely used an unsupervised machine learning technique
• Could be used to classify PDF data

• Class of Finite Mixture Models
• https://doi.org/10.1146/annurev-statistics-031017-100325

• Widely used in astronomy and astrophysics to distinguish between different 
sources in the sky 

• First proposed by Karl Pearson (1894) – to study characteristics of a population of 
crabs

• Focus of this talk: How can this machine learning technique be used as a 
statistical model for uncertainties in PDFs?
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https://doi.org/10.1146/annurev-statistics-031017-100325
https://doi.org/10.1098/rsta.1894.0003


Outline

• Motivation for GMM use in PDFs 
• Description of use of GMM in a simple 1-D example
• Demonstrate idea with a toy model of PDFs
• Summary
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Measuring Mass (Weight) PHY-101 Lab

• Measure mass of W-boson
• Repeat measurement several times
• Minimize log-likelihood or loss function

• 𝜒! = ∑"
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• Determine best-fit value

• 𝑚) = 𝜇 = 80.36 ± 0.016 𝐺𝑒𝑉

ATLAS-CONF-2023-004
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Measuring Mass (Weight) PHY-101 Lab

Manufactured by CDF Manufactured by ATLAS

Improve precision: Repeat measurements 
with more precise balance CDF Science 376 (2022)

𝑚)
*+, = 80.433 ± 0.009 𝐺𝑒𝑉

𝑚)
-./-0 = 80.36 ± 0.016 𝐺𝑒𝑉 5
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https://inspirehep.net/literature/2064224


Measuring Mass (Weight) PHY-101 Lab
• How should we combine these two discrepant measurements to give one 

value of mass?
• Attempt #1: Let’s repeat earlier exercise

• Minimize loss function

• 𝜒' = ∑(
) *+! "

,!
"

• 𝑚- = 80.415 ± 0.011 𝐺𝑒𝑉

• 2𝜎 band does not cover both means
• What should we do?

• Usual proposal
• Increase tolerance Δ𝜒! = 𝑇!; 𝑇 > 1
• Does not provide a faithful representation of the probability distribution of 𝑚), 
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Shortcomings of our usual proposal
• Why didn’t our usual approach reproduce the probability distribution 

function for 𝑚/ work?
• In this simple example

• We ignored individual likelihoods from  each experiment
• We minimized the 𝜒! which is

• Just like taking the weighted mean
• And adding errors in quadrature
• Then defining a new gaussian likelihood (green)
• Starting assumption is that 𝑚- likelihood is a single gaussian
• Good assumption if data is consistent

• Attempt #2: Combine likelihoods
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Combining Likelihoods – Gaussian Mixture Model

• Start by parameterizing the likelihood as a 
sum of Gaussians 

• In this simple example we know there are two 
Gaussians, i.e. K= 2

• In general, the value of K needs to be determined –
discussed later

• Introduced a new parameter 𝜔1 - weights
• Constraints on 𝜔.; ensures proper normalization and 

interpretation as a probability distribution function
• Proxy for our confidence in each experiment
• For simplicity we’ll use equal weights here
• In reality – it is an additional fit parameter

Combined 
Likelihood
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Determine mean and variance for GMM

Mean

Weighted sum of covariances 
of each Gaussian

Difference 
between 

Gaussians

𝜇𝜇 − 𝜎 𝜇 + 𝜎

Here we use the variance as an estimator for 
the standard error.
Alternatively, we could use the Observed 
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Determine mean and variance for GMM

Mean

Weighted sum of covariances 
of each Gaussian

Difference 
between 

Gaussians

𝜇

𝜇 − 𝜎

𝜇 + 𝜎

Caveat about green curve: because we are 
used to it, it is possible to model this as a 
single Gaussian (green) – but we must be 
careful - it is not a faithful representation of 
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Application of GMM to a toy model of PDFs



Pseudo-data generation

“truth”

Central value

Uncertainty

Parameters of model: {𝑎2, 𝑎3, 𝑎!, 𝑎4, 𝑎5, 𝑎6}

Inconsistent Pseudo-data generated by 
starting with different values of 𝑎5 & 𝑎6

A toy model of PDFs with inconsistent data



Fits to pseudo-data

LS-A

LS-BLS-C

LS-A

LS-B

LS-CLS-A: Data set 1 only
LS-B: Data set 2 only
LS-C: Combines all 
data



Comparison with 
CTEQ-TEA criteria: 
Δ𝜒( = 37 ⇒ 68% 𝐶. 𝐿.

Fits to pseudo-data using the GMM

LS-A

LS-B

LS-C

GMM
“1𝜎”

GMM uncertainty ellipse spans both replica sets. Unlike 
usual 𝜒2 method
Axis of ellipse is different – covers uncertainties from 
individual data sets
Tolerance criteria both over and  underestimates 
uncertainties in different regions



GMM reduces to the 𝝌𝟐 likelihood (K= 𝟏), when data is consistent  



How many Gaussians? How do we determine K?

Akaike Information Criterion (AIC)
(Akaike, 1974) 
Bayesian Information Criterion (BIC)
Schwarz (Ann Stat 1978, 6:461–464)

Strong tension

Weak tension 
due to large 
uncertainty

Consistent but 
data fluctuated

Consistent - No 
fluctuation

Use the lowest values of AIC & 
BIC to determine the best value of 
K and avoids over-fitting.

10.1109/TAC.1974.1100705
https://doi.org/10.1214/aos/1176344136


Summary & Outlook
• Proposed the use of GMM, a well-known machine learning classification tool, as a statistical 

model to estimate uncertainty in PDF fits
• Can also be used to classify PDF fitting data – unsupervised machine learning task

• Provides a way to faithfully combine likelihoods from different experiments as well as  
represent the likelihood of the PDF fit.

• The usual tolerance method overestimates errors in some regions and underestimates 
in others

• Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF 
uncertainty estimation
• Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn

• Presented the frequentist approach in this talk. Extends to the Bayesian approach as well.
• Here I only showed tension due to experimental inconsistencies, but this also applies to 

tension resulting from theoretical inadequacies.
• Next steps: Apply to real data and pdf fit.

17Pheno-23     Kirtimaan Mohan


