

Motivation

- Precision measurements need precise PDFs
- PDF fitting groups have to contend with tension in data
 - See plenary talk by <u>C.-P. Yuan or arXiv:1905.0695</u>
 - Many strategies to deal with this: For example, the use of tolerance $(\Delta \chi^2 = T^2)$
- This talk will describe the Gaussian Mixture Model (GMM) and how it can be applied to both
 - finding inconsistencies
 - as well as provide a robust statistical model to determine uncertainties

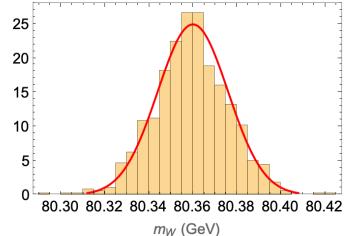
What is the Gaussian Mixture Model?

- Widely used an unsupervised machine learning technique
 - Could be used to classify PDF data
- Class of Finite Mixture Models
 - https://doi.org/10.1146/annurev-statistics-031017-100325
- Widely used in astronomy and astrophysics to distinguish between different sources in the sky
- First proposed by <u>Karl Pearson (1894)</u> to study characteristics of a population of crabs
- Focus of this talk: How can this machine learning technique be used as a statistical model for uncertainties in PDFs?

Outline

- Motivation for GMM use in PDFs
- Description of use of GMM in a simple 1-D example
- Demonstrate idea with a toy model of PDFs
- Summary

Measuring Mass (Weight) PHY-101 Lab

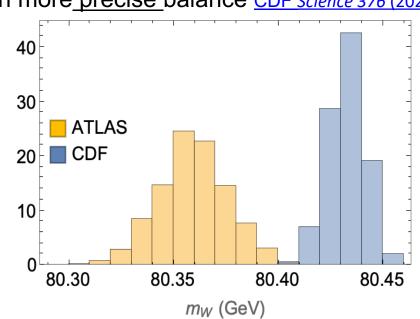

- Measure mass of W-boson
- Repeat measurement several times
- Minimize log-likelihood or loss function

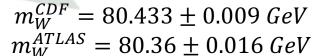
•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$

•
$$L = \prod_{i} \frac{e^{\left[\frac{(\mu - x_i)^2}{\sigma_i^2}\right]}}{\sqrt{2\pi}\sigma_i}$$

- Determine best-fit value
 - $m_W = \mu = 80.36 \pm 0.016 \, GeV$

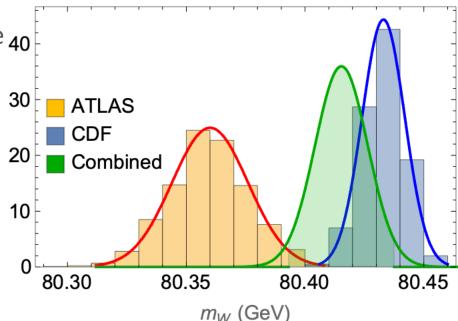
ATLAS-CONF-2023-004


Measuring Mass (Weight) PHY-101 Lab


Improve precision: Repeat measurements with more precise balance CDF Science 376 (2022)

Manufactured by CDF

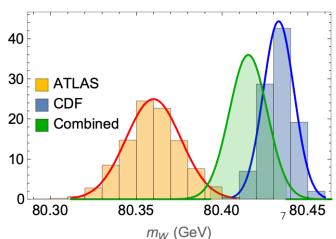
Manufactured by ATLAS


Measuring Mass (Weight) PHY-101 Lab

- How should we combine these two discrepant measurements to give one value of mass?
- Attempt #1: Let's repeat earlier exercise 40
 - Minimize loss function

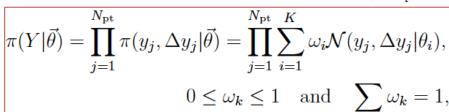
•
$$\chi^2 = \sum_i \frac{(\mu - x_i)^2}{\sigma_i^2}$$

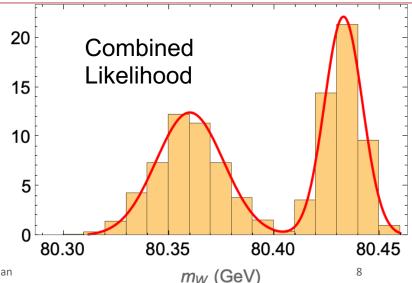
- $m_W = 80.415 \pm 0.011 \, GeV$
- 2σ band does not cover both means
 - What should we do?
- Usual proposal
 - Increase tolerance $\Delta \chi^2 = T^2$; T > 1



Shortcomings of our usual proposal

- Why didn't our usual approach reproduce the probability distribution function for m_{W} work?
- In this simple example
 - · We ignored individual likelihoods from each experiment
 - We minimized the χ^2 which is
 - Just like taking the weighted mean
 - And adding errors in quadrature
 - Then defining a new gaussian likelihood (green)
 - Starting assumption is that m_W likelihood is a single gaussian
 - Good assumption if data is consistent
- Attempt #2: Combine likelihoods





Combining Likelihoods – Gaussian Mixture Model

$$\mathcal{N} = \frac{e^{\left[\frac{(\mu - \lambda_i)}{\sigma_i^2}\right]}}{\sqrt{2\pi}\sigma_i}$$

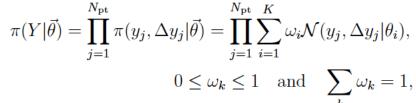
- Start by parameterizing the likelihood as a sum of Gaussians
- In this simple example we know there are two Gaussians, i.e. K=2
- In general, the value of K needs to be determined discussed later
- Introduced a new parameter ω_k weights
- Constraints on ω_k ; ensures proper normalization and interpretation as a probability distribution function
- Proxy for our confidence in each experiment
- For simplicity we'll use equal weights here
- In reality it is an additional fit parameter

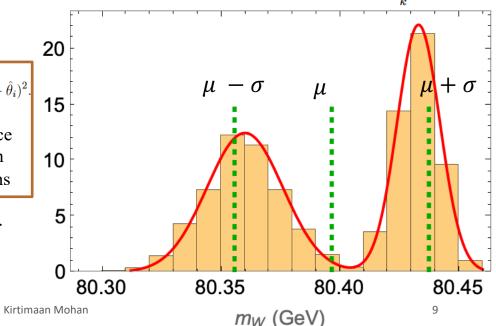
Determine mean and variance for GMM

Difference

between

Gaussians


Mean


$$\mathbb{E}[\theta] = \sum_{i=1}^{K} \omega_i \hat{\theta}_i.$$

$$\begin{array}{ll} \operatorname{cov}_{\operatorname{GMM}} &=& \displaystyle\sum_{i=1}^K \omega_i \operatorname{cov}_{\operatorname{GMM},i} + \displaystyle\sum_{i=1}^K \omega_i (\mathbb{E}[\theta] - \hat{\theta}_i)^2 \\ &=& \displaystyle\sum_{i=1}^K \omega_i \bigg(\displaystyle\sum_{j=1}^{N_{\operatorname{pt}}} \frac{1}{\Delta y_j^2} \bigg(\frac{\partial y_j(\theta_i)}{\partial \theta_i} \bigg)^2 \frac{\mathcal{N}(y_j, \Delta y_j | \theta_i)}{\pi(y_j, \Delta y_j | \vec{\theta})} \bigg)^{-1} + \displaystyle\sum_{i=1}^K \omega_i (\mathbb{E}[\theta] - \hat{\theta}_i)^2. \\ &=& \operatorname{Weighted sum of covariances} \\ &=& \operatorname{of each Gaussian} \end{array}$$

Here we use the variance as an estimator for the standard error.

Alternatively, we could use the Observed Fisher Information Matrix

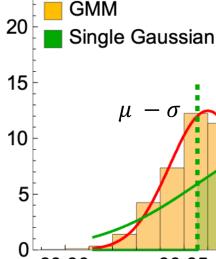
Determine mean and variance for GMM

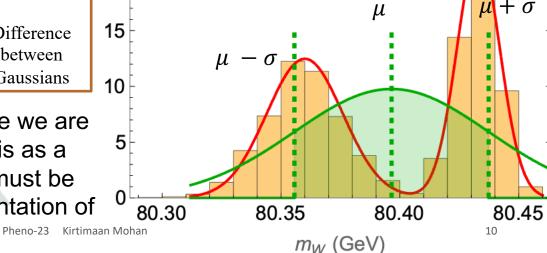
Mean

the likelihood.

$$\mathbb{E}[\theta] = \sum_{i=1}^K \omega_i \hat{\theta}_i.$$

$$\begin{array}{ll} \operatorname{cov}_{\operatorname{GMM}} &=& \sum_{i=1}^K \omega_i \operatorname{cov}_{\operatorname{GMM},i} + \sum_{i=1}^K \omega_i (\mathbb{E}[\theta] - \hat{\theta}_i)^2 \\ &=& \sum_{i=1}^K \omega_i \bigg(\sum_{j=1}^{N_{\operatorname{pt}}} \frac{1}{\Delta y_j^2} \bigg(\frac{\partial y_j(\theta_i)}{\partial \theta_i} \bigg)^2 \frac{\mathcal{N}(y_j, \Delta y_j | \theta_i)}{\pi(y_j, \Delta y_j | \vec{\theta})} \bigg)^{-1} + \sum_{i=1}^K \omega_i (\mathbb{E}[\theta] - \hat{\theta}_i)^2. \\ &=& \operatorname{Weighted sum of covariances} \\ &=& \operatorname{of each Gaussian} \end{array}$$


Caveat about green curve: because we are used to it, it is possible to model this as a single Gaussian (green) – but we must be careful - it is **not** a faithful representation of


Difference

between Gaussians

$$\pi(Y|\vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \pi(y_j, \Delta y_j | \vec{\theta}) = \prod_{j=1}^{N_{\text{pt}}} \sum_{i=1}^{K} \omega_i \mathcal{N}(y_j, \Delta y_j | \theta_i),$$

 $0 \le \omega_k \le 1$ and $\sum \omega_k = 1$,

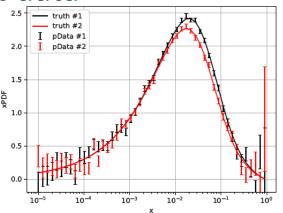
Application of GMM to a toy model of PDFs

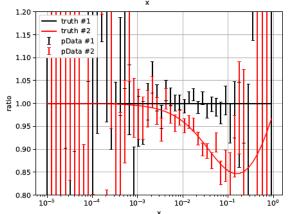
A toy model of PDFs with inconsistent data

"truth"
$$g(x) = a_0 x^{a_1} (1-x)^{a_2} e^{xa_3} (1+xe^{a_4})^{a_5}$$

Parameters of model: $\{a_0, a_1, a_2, a_3, a_4, a_5\}$

Pseudo-data generation

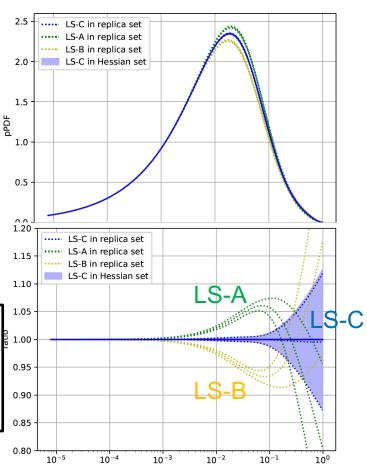

Central value
$$g_D(x) = (1 + r \times \Delta g(x))g(x)$$


Uncertainty

$$\Delta g(x) = \frac{\alpha}{\sqrt{g(x)}}$$

	$N_{ m pt}$	a_0	a_1	a_2	a_3	a_4	a_5
pseudo-data #1	50	30	0.5	2.4	4.3	2.4	-3.0
pseudo-data $\#2$	50	30	0.5	2.4	4.3	2.6	-2.8

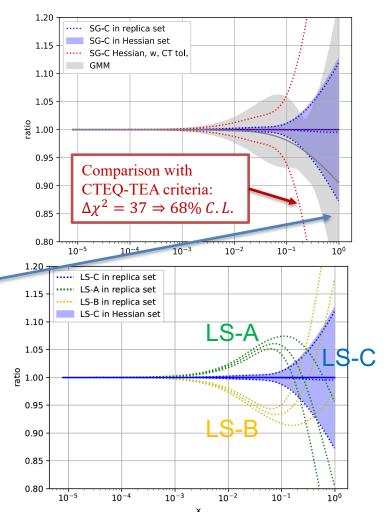
Inconsistent Pseudo-data generated by starting with different values of $a_4 \& a_5$



Fits to pseudo-data
$$\chi^2 = \sum_{j=1}^{N_{
m pt}} \left(\frac{D_i - T_i(\theta)}{\Delta D_i} \right)^2$$

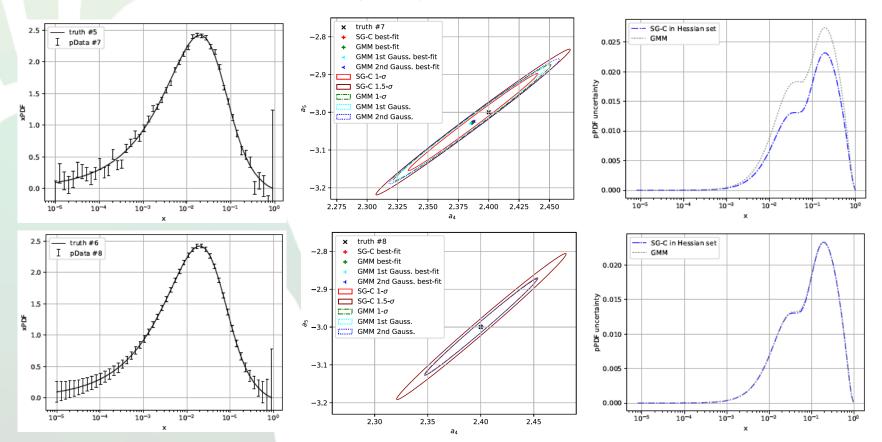
fits	pseudo-data	best-fit a_4	best-fit a_5	$\chi^2_{\#1}/N_{\mathrm{pt}}$	$\chi^2_{\#2}/N_{\mathrm{pt}}$		
LS-A	# 1	2.32	-3.22	0.88	6.55		
LS-B	# 2	2.63	-2.73	7.00	1.02		
$\operatorname{LS-}C$	# 1 and $#$ 2	2.48	-2.94	2.27	2.56		A CO
truth	# 1	2.4	-3.0	-	-		2
truth	# 2	2.6	-2.8	-	-		
−2.4 T							
	LS-C in repli						
	LS-A in repli						
-2.6	LS-B in repli	ca set					
	x truth #2				C D		
-2.8	+ LS-C best-fit		LS-(9-B		
-2.0	LS-C 1-σ						
	LS-C 3-σ						
සි −3.0 -				<u> </u>			
				IC 4. D		1	l
				LS-A: D	ata set 1	r only	þ
-3.2				I S_R+ D	ata set 2	only	В
		S-A	.	L3 D. D	ata set z	2 Offiny	ı
-3.4				IS-C: C	ombines	s all	ı
-3.4						<i>,</i>	ı
		and the same of th		data			ı
-3.6		N.P	_	ı	1 1		J
1.	9 2.0 2.1	2.2 2.3	2.4 2	5 2.6 2	2.7 2.8		
			a ₄				




Fits to pseudo-data using the GMM

GMM uncertainty ellipse spans both replica sets. Unlike usual χ^2 method

Axis of ellipse is different – covers uncertainties from individual data sets


Tolerance criteria both over and underestimates uncertainties in different regions

GMM reduces to the χ^2 likelihood (K= 1), when data is consistent

How many Gaussians? How do we determine K?

Akaike Information Criterion (AIC) (Akaike, 1974)

Bayesian Information Criterion (BIC) Schwarz (Ann Stat 1978, 6:461–464)

AIC =
$$N_{\text{parm}} \log N_{\text{pt}} - 2\log L|_{\theta = \hat{\theta}}$$
,
BIC = $2N_{\text{parm}} - 2\log L|_{\theta = \hat{\theta}}$.

$$N_{\text{parm}} = 2K + (K - 1).$$

Use the lowest values of AIC & BIC to determine the best value of K and avoids over-fitting.

etti mine ix								
			K = 1	K=2	K = 3	K = 4		
	case-1	AIC	-102.2	-203.6	-194.9	-187.9		
Strong tension		BIC	-106.1	-211.2	-206.4	-203.2		
	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-55.0	-109.6	-109.2	-109.6		
Weak tension	case-2	AIC	-21.2	-15.4	-7.9	-0.2		
due to large		BIC	-25.0	-23.0	-19.3	-15.5		
uncertainty	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-14.5	-15.5	-15.7	-15.7		
	case-3	AIC	-219.3	-220.2	-212.8	-205.0		
		BIC	-223.2	-227.8	-224.3	-220.3		
	$N_{\rm pt} = 100$	$-\mathrm{log}L$	-113.6	-117.9	-117.9	-118.1		
Consistent but	case-4	AIC	-117.8	-109.9	-102.1	-94.3		
data fluctuated		BIC	-121.6	-117.6	-113.6	-109.6		
	$N_{\rm pt}=50$	$-\mathrm{log}L$	-62.8	-62.8	-62.8	-62.8		
C : (N	case-5	AIC	-169.3	-161.5	-153.6	-145.8		
Consistent - No fluctuation		BIC	-173.1	-169.1	-165.1	-161.1		
Huctuation	$N_{\rm pt}=50$	$-\mathrm{log}L$	-88.6	-88.6	-88.6	-88.6		
$N_{ m pt}$ $N_{ m pt}$ K								
$\pi(Y \vec{\theta}) = \prod_{i} \pi(y_j, \Delta y_j \vec{\theta}) = \prod_{i} \sum_{j} \omega_i \mathcal{N}(y_j, \Delta y_j \theta_i),$								
	j=1 $j=1$ $i=1$							

 $0 \le \omega_k \le 1$ and $\sum_{k} \omega_k = 1$,

Summary & Outlook

- Proposed the use of GMM, a well-known machine learning classification tool, as a statistical model to estimate uncertainty in PDF fits
 - Can also be used to classify PDF fitting data unsupervised machine learning task
- Provides a way to faithfully combine likelihoods from different experiments as well as represent the likelihood of the PDF fit.
 - The usual tolerance method overestimates errors in some regions and underestimates in others
- Can be used in conjunction with both the Hessian and Monte-Carlo method of PDF uncertainty estimation
 - Tools to develop this already exist in machine learning packages like TensorFlow/PyTorch/ scikit-learn
- Presented the frequentist approach in this talk. Extends to the Bayesian approach as well.
- Here I only showed tension due to experimental inconsistencies, but this also applies to tension resulting from theoretical inadequacies.
- Next steps: Apply to real data and pdf fit.