Imprints of Axion's Evolution in CMB

Shuyang Cao

Department of Physics & Astronomy University of Pittsburgh

Pheno 2023 May 9, 2023

Background What is ALP?

Axion-like particle (ALP) is a psudo-scalar field

- possible solution to strong CP problem
- candidate of dark matter
- ullet appear after breaking a global U(1) symmetry
 - called Peccei–Quinn symmtry if in QCD axion
- Depending on the time of symmtry breaking, ALP evolution can be
 - topological defects and non-linear dynamics
 - non-zero initial amplitude and damped oscillations (the misaligned initial condition)

Motivation Questions

• How do axion-like particles evolve in a (thermal) medium?

What observables does such an evolution leave in the medium?

Motivation Questions

• How do axion-like particles evolve in a (thermal) medium?

What observables does such an evolution leave in the medium?

Prelude

Snowmass2021 TF08 Whitepaper Some open questions in axion theory VI. AXIONS AND THERMAL FRICTION

held and the light degrees of freedom sources dark radiation, such that a steady-state-temperature (T > H) can be maintained even in an inflating universe. The equations that govern the time evolution of the scalar field and the radiation are given by:

$$\ddot{a} + (3H + \Upsilon)\dot{a} + V'(a) = 0,$$

$$\dot{\rho}_{dr} + 4H\rho_{dr} = \Upsilon \dot{a}^2,$$
(15)

where ρ_{dr} is the energy density of dark radiation and V(a) is the potential of a. This warm inflation cenario [219–225], has both interesting predictions for observations as well as theoretical unside

Keldysh Formalism

Framework

1 Couple ALP with a bath χ via $H_I = ga\mathcal{O}_{\chi}$, e.g.,

$$ga\vec{E}\cdot\vec{B},~~g_saG^{\mu\nu,b}\tilde{G}_{\mu\nu,b},~~g_\psi a\bar{\Psi}\gamma^5\Psi$$

- 2 Assume decoupled initial state $\hat{\rho}(0) = \hat{\rho}_{a}(0) \otimes \hat{\rho}_{\chi}(0)$
- 3 Trace over bath's degrees of freedom χ .

$$\rho^{r}(a_{f}^{\pm};t) = \int_{a_{i}^{\pm},a^{\pm}} \rho_{a}(a_{i}^{\pm};0) \exp\left\{i \int d^{4}x \left[\mathcal{L}_{a}^{+} - \mathcal{L}_{a}^{-}\right] + i\mathcal{I}[a^{+};a^{-}]\right\}$$

$$iS_{eff}$$

All bath information is encoded in $\mathcal{I}[a^{\pm}]$

Close Time Path

Keldysh Formalism

Influence function

4 Expand influence function in terms of g with $\langle \cdots \rangle = \operatorname{Tr}_{\chi}[\cdots \rho_{\chi}(0)]$.

$$\mathcal{I}[a^+,a^-] = -g \int d^4x \, a^\pm(x) \langle \mathcal{O}_\chi \rangle \longleftarrow \text{ vanish if parity of } \rho_\chi(0) \text{ is even}$$

$$+ \frac{ig^2}{2} \int d^4x_1 d^4x_2 \, a^\pm(x_1) \langle \mathcal{O}_\chi(x_1) \mathcal{O}_\chi(x_2) \rangle^{\pm \pm} a^\pm(x_2)$$

$$+ \cdots$$

- Four terms at $\mathcal{O}(g^2)$ with different labels
- Each term in expansion is <u>exact</u> in terms of couplings among degrees of freedom inside bath, e.g.

Equation of Motion

Langevin equation

Take the variation of the effective action. Up to $\mathcal{O}(g^2)$, equation of motion is a Langevin equation.

$$\ddot{\mathcal{A}}_{\vec{k}}(t) + \omega_{\vec{k}}^2 \mathcal{A}_{\vec{k}}(t) + \int_0^t \sum_{\vec{k}} (t - t') \mathcal{A}_{\vec{k}}(t') d't = \xi_{\vec{k}}(t)$$

- $A = \frac{1}{2}(a^+ + a^-)$ is the average of two branches.
- Initial conditions A_i , \dot{A}_i are subject to initial density matrix $\rho_a(0)$.
- ξ is stochastic noise from bath and subject to Gaussian distribution $P[\xi]$

$$\langle\langle\xi\rangle\rangle=0, \qquad \langle\langle\xi_{\vec{k}}(t)\xi_{\vec{k'}}(t')\rangle\rangle=\mathcal{N}_{\vec{k}}(t-t')\delta_{\vec{k},-\vec{k'}}$$

• Expectation values of observables $\overline{\langle\langle\cdots\rangle\rangle}$ are obtained after averaging over both initial condition $\overline{\langle\cdots\rangle}$ and noise $\langle\langle\cdots\rangle\rangle$.

Langevin Equation

Generalized fluctuation-dissipation relation

The self energy $i\Sigma(\vec{x},t)$ and noise kernel $\mathcal{N}(\vec{x},t)$

- ullet are given by the *influence function* $\mathcal{I}[a^+,a^-]$
- depend on bath property $\rho_{\chi}(0)$ and the coupling operator \mathcal{O}_{χ}

$$\begin{split} \mathcal{N}(x_1 - x_2) &= \frac{g^2}{2} \mathsf{Tr}\Big(\big\{\mathcal{O}_\chi(t_1), \mathcal{O}_\chi(t_2)\big\} \hat{\rho}_\chi(0)\Big) \\ i\Sigma(x_1 - x_2) &= g^2 \mathsf{Tr}\Big(\big[\mathcal{O}_\chi(t_1), \mathcal{O}_\chi(t_2)\big] \hat{\rho}_\chi(0)\Big) \end{split}$$

Theorem (fluctuation-dissipation)

Assume a bath is in thermal equilibrium initially and couples with the system via bosonic operators.

$$i\Sigma(\vec{k},\omega) \coth\left[\frac{\beta\omega}{2}\right] = 2\mathcal{N}(\vec{k},\omega)$$

Langevin Equation

Decoherence and thermalization

For misaligned initial conditions,

Amplitude damps.

$$\langle \mathcal{A}_{\vec{k}}(t) \rangle = e^{-rac{\Gamma_{\vec{k}}}{2}t} \Big[\overline{\mathcal{A}}_{i,\vec{k}} \cos(\Omega_{\vec{k}}t) + \overline{\dot{\mathcal{A}}}_{i,\vec{k}} \frac{\sin(\Omega_{\vec{k}}t)}{\Omega_{\vec{k}}} \Big] + \mathcal{O}(g^2)$$

Energy distribution approaches to thermal equilibrium, indicating thermalization.

$$\frac{E}{V} = \frac{e^{-\Gamma_0 t}}{2} \left[\dot{\mathcal{A}}_i^2 + m_a^2 \, \mathcal{A}_i^2 \right] + \int \frac{d^3 k}{(2\pi)^3} \, \Omega_k \, n(\Omega_k) \left(1 - e^{-\Gamma_k t} \right) + \mathcal{O}(g^2)$$
initial cold component decays
thermalized component grows

where $n(\Omega_{\vec{k}})$ is Bose-Einstein distribution.

A warming-up scenario for cold ALPs is exhibited.

A Classical Example: Ink drop in water

Brownian motion

Red ink drop in water [Vecteezy.com] (image is cropped)

Described by a Langevin equation

$$m {m a}(t) + \lambda {m v}(t) = {m \eta}(t)$$

- Ink drop in water experiences two effects.
 Drag dissipates the initial stream
 Brownian Motion causes ink to diffuse in and thermalize with water
 - Both effects originate from random collisions with water molecules, consequently are connected by

$$\langle \eta_i(t)\eta_j(t')
angle = 2\lambda k_B T \delta_{ij}\delta(t-t')$$
 fluctuation dissipation

Application to Photon Bath Photon-ALP Coupling

Consider photon-ALP coupling.

$$\mathcal{L}_I = -ga(x)\vec{E}(x)\cdot\vec{B}(x)$$

Up to the second order of g

For cosmic interest, this calculation is valid from recombination onward. Otherwise we need to consider plasma instead of a pure photon bath.

Application to Photon Bath

 Relaxation rate is substantially enhanced at finte temperature.

• In long wavelength $k \ll m_a$ and high temperature limit $T \gg m_a$,

$$\frac{\Gamma_T}{\Gamma_0} = 4 \frac{T}{m_a} \qquad \Gamma_0 = \frac{g^2 m_a^4}{64 \pi \Omega_k}$$

• As an estimation,

$$T_{
m recombination} pprox 0.26\,{
m eV}$$

$$T_{
m CMB} pprox 2.3 imes 10^{-4}\,{
m eV}$$

$$m_{\it a} \sim \mu {
m eV}$$

$(\omega_T - \omega_a)/g^2$ $(\omega_{T} -$

Figure: $\Delta \omega/g^2$ is in units of m_a^3

Application to Photon Bath

Reduced finite temperature effective mass

- Finite temperature self-energy correction is negative
- In high temperature limit $T\gg m_a$,

$$m_a^2(T) pprox m_a^2 iggl[1 - iggl(rac{T}{T_c} iggr)^4 iggr] \ T_c = iggl(rac{15}{\pi^2} iggr)^{rac{1}{4}} \sqrt{rac{m_a}{g}}$$

• At $T > T_c$, $m_a^2(T)$ is negative, leading to instability, a signal for an inverted phase transition.

Application to Photon Bath

Higher order Derivative terms

Divergences in zero-temperature part of self-energy require higher order derivatives.

$$\Sigma_R^{(0)} = -\frac{g^2}{64\pi^2} \left[\underbrace{\frac{1}{2}\Lambda^4 + 2K^2\Lambda^2}_{\text{regularized away}} + \frac{3}{2}(K^2)^2 + \underbrace{(K^2)^2 \ln\left(\frac{\Lambda^2}{|K^2|}\right)}_{\text{require } (\partial^2 a)^2 \text{ term}} \right]$$

Ginzburg-Landau description

$$F = \frac{1}{2}(\partial a)^2 + C(\partial^2 a)^2 + \dots + \frac{1}{2}m_a^2(T)a^2 + Da^4 + \dots$$
possible density wave
if $C < 0$ possible condensate
when $m_a^2(T) < 0$

possible new exotic phase

Quantum Master Equation A complementary check

Solve the quantum master equation

$$\dot{\hat{\rho}}_{I}(t) = -i[H_{I}, \hat{\rho}_{I}(0)] - \int_{0}^{t} [H_{I}(t), [H_{I}(t'), \hat{\rho}_{I}(t')]]dt'$$

- Use Markove approximation, rotating wave approximation.
- Recover decay rate, self energy, decoherence, thermalization

Background Questions

• How do axion-like particles evolve in a (thermal) medium?

What observables does such an evolution leave in the medium?

Condensate Induced by Coherent ALP Field

1 Begin with a Lagrangian

$$\mathcal{L}=rac{1}{2}(\partial extbf{a})^2-rac{1}{2}m_{ extbf{a}}^2 extbf{a}^2+\mathcal{L}_{\chi}- extbf{ga}\mathcal{O}_{\chi}$$

2 Find the equation of motion for operators in Heisenberg picture.

$$rac{\partial^2}{\partial t^2} a(\vec{x},t) -
abla^2 a(\vec{x},t) + m_a^2 a(\vec{x},t) = -g \mathcal{O}_\chi(\vec{x},t)$$

3 Expectation values are found by tracing over the intial density matrix.

$$\langle \mathcal{O}_{\chi}(\vec{x},t) \rangle = -rac{1}{g} \left[rac{\partial^2}{\partial t^2} \, \overline{a}(\vec{x},t) -
abla^2 \overline{a}(\vec{x},t) + m_{0a}^2 \, \overline{a}(\vec{x},t)
ight]$$

- $\langle \mathcal{O}_{\chi} \rangle$ and $\overline{a} \triangleq \langle a \rangle$ are macroscopic condensates.
- 4 NOT the end of the story.

Linear Response Theory

Mean field approximation

① Decompose a coherent ALP as its amplitude expectation value \overline{a} and quantum fluctuations \widetilde{a} around the amplitude.

$$a(\vec{x},t) = \overline{a}(\vec{x},t) + \widetilde{a}(\vec{x},t)$$

2 Neglect the fluctuations $\widetilde{a}(x)$ (mean field approximation).

$$\mathcal{L}_I = -g \, \overline{a} \, \mathcal{O}_{\chi}$$
 or $H_I(t) = g \, \int d^3x \, \overline{a}(\vec{x},t) \, \mathcal{O}_{\chi}(\vec{x})$

3 Result in a system driven by a classical source. Up to the linear order,

$$\langle \mathcal{O}_{\chi}(\vec{x}) \rangle(t) \triangleq \operatorname{Tr} \left(\mathcal{O}_{\chi}(\vec{x}) \, \rho_{\chi}(t) \right) = \int d^3x' \int_{t_0}^t \Xi(\vec{x} - \vec{x}', t - t') \, \overline{a}(\vec{x}', t') \, dt' + \cdots$$

Linear Response Theory Dynamical susceptibility

• The linear response kernel $\Xi(\vec{x}-\vec{x}',t-t')$ is also called dynamical susceptibility.

$$\Xi(\vec{x}-\vec{x}',t-t') = -ig \mathrm{Tr} \Big(\left[\mathcal{O}_{\chi}^{(H_{\chi})}(\vec{x},t), \mathcal{O}_{\chi}^{(H_{\chi})}(\vec{x}',t') \right] \rho_{\chi}(t_0) \Big) \hspace{0.2cm} ; \hspace{0.2cm} t > t'$$

- The superscript (H_{χ}) means Heisenberg picture in absence of the source \bar{a} .
- Dynamical susceptibility $\Xi(x-x')$ and self-energy $\Sigma(x-x')$ are simply related by the coupling strength g.

$$\Sigma(x-x')=g\,\Xi(x-x')$$

Chern-Simons Condensate

• Suppose the medium states are photons, i.e., $\mathcal{O}_\chi = \vec{E} \cdot \vec{B}$,

• This pseudoscalar density $\vec{E} \cdot \vec{B}$ is a total surface term, hence the name, Chern-Simons condensate $\langle \vec{E} \cdot \vec{B} \rangle$.

$$ec{E} \cdot ec{B} \propto F_{\mu\nu} \widetilde{F}^{\mu\nu} \propto \partial_{\mu} \Big(\varepsilon^{\mu\nu\alpha\beta} A_{\nu} \partial_{\alpha} A_{\beta} \Big)$$

Chern-Simons Condensate Induced by ALP

• For simiplicity in this talk, assume a homogeneous ALP field.

$$\overline{a}(t) = e^{-\frac{\Gamma}{2}t} \left(a_0 e^{-im_a t} + a_0^* e^{im_a t} \right)$$

The induced Chern-Simons condensate is

$$\langle ec{E}\cdotec{B}
angle(t)=rac{1}{g}\left[\Sigma(ec{0},m_a)\,\overline{a}(t)+\Gamma\,\dot{\overline{a}}(t)
ight]$$

Note that $\Sigma(\vec{0}, m_a), \Gamma \propto g^2$. Therefore,

$$\langle \vec{E}\cdot\vec{B}
angle \propto g$$

• At hight temperature,

$$\langle \vec{E} \cdot \vec{B} \rangle (t) = -\frac{g \, \pi^2 \, T^4}{15} \, \overline{a}(t) + \frac{g \, m_a^2 \, T}{16 \, \pi} \, \dot{\overline{a}}(t) + \mathcal{O}(m_a^2/T^2)$$

Probe the Chern-Simons Condensdate

Mixing with emergent axion quasiparticles

• Axion-Like quasi-particle ${\cal A}$ can be created in some novel materials, e.g., topological insulator.

$$g_{A\gamma\gamma}A\vec{E}\cdot\vec{B}, \qquad g_{A\gamma\gamma}\propto \alpha_{EM}$$

• It can couple/mix with cosmic ALP via photons, be driven by the condensate.

Possibly Improved Detection Efficiency

Detect ALP at the linear order of the coupling

 The mixing effect provides detection schemes with efficiency linearly proportional to ALP-photon coupling.

$$\overline{\mathcal{A}} \propto \mathsf{g}_{\mathsf{a}\gamma\gamma} lpha_{\mathsf{EM}} \overline{\mathsf{a}}$$

- This is achieved by exploiting the coherence of cosmic ALP
- Many search schemes rely on higher order processes.

Solar Axion Helioscopes

Light Shinning Through Wall

(Stimulated) Emission Line

Conclusions

- The evolution of axion-like particles in a thermal medium
 - Noise terms are important, leading to warming-up ALPs.
- Chern-Simions condensate induced by a coherent ALP field
- Possible search schemes at the linear order of ALP-photon coupling

Future Directions

- Add cosmological expansion
- Explore entangled initial condition instead of $\rho_a(0) \otimes \rho_\chi(0)$
- Give analytical measurable signals for the proposed search scheme.

•

Thank You For Your Attention

This talk is based on PhysRevD.106.123503, PhysRevD.107.063518, PhysRevD.107.083531.

Keldysh Formalism

Canonical quantization ↔ Path-Integral formalism

Map between canonical quantization and path-integral formalism

$$\langle a_f; \chi_f | U(t) | a_i; \chi_i \rangle = \int \mathcal{D} a^+ \mathcal{D} \chi^+ e^{i \int_0^t d\tau \int d^3 x \mathcal{L}[a^+, \chi^+]}$$
$$\langle a_i'; \chi_i' | U^{-1}(t) | a_f'; \chi_f' \rangle = \int \mathcal{D} a^- \mathcal{D} \chi^- e^{-i \int_0^t d\tau \int d^3 x \mathcal{L}[a^-, \chi^-]}$$

Map between CTP varaibles and field operators

$$A^+B^+ o \operatorname{Tr}[T(AB)\rho] \qquad A^-B^- o \operatorname{Tr}[\rho \widetilde{T}(AB)] \qquad A^+B^- o \operatorname{Tr}A\rho B$$

Trace over bath's degrees of freedom

$$e^{i\mathcal{I}[a^+;a^-]} = \operatorname{Tr}_\chi \Big[\mathcal{U}(t;a^+) \,
ho_\chi(0) \, \mathcal{U}^{-1}(t;a^-) \Big]$$

Langevin Equation

1 Introduce Keldysh variables.

$${\cal A} = rac{1}{2}(a^+ + a^-), \quad {\cal R} = a^+ - a^-$$

They induce a Wigner transform $\rho_a(0) \longrightarrow W[A_i, \pi_i]$

2 Introduce external source \mathcal{J} in iS_{eff} and define the generating functional $Z[\mathcal{J}]$ by setting $\mathcal{R}_f = 0$ and tracing over \mathcal{A}_f in $\rho_f(a_f^{\pm}; t)$.

$$\begin{split} &Z[\mathcal{J}] \propto \int_{\mathcal{A}_{i}\cdots} \underbrace{W[\mathcal{A}_{i},\pi_{i}]}_{\text{initial condition}} \times \underbrace{P[\xi]}_{\text{probability distribution}} \times \exp\left\{i \int dt \sum_{\vec{k}} \mathcal{A}_{\vec{k}}(t) \mathcal{J}_{-\vec{k}}(t)\right\} \\ &\times \prod_{\vec{k}} \delta \big[\ddot{\mathcal{A}}_{\vec{k}}(t) + \omega_{\vec{k}}^{2} \mathcal{A}_{\vec{k}}(t) + \int_{0}^{t} \underbrace{\sum_{\vec{k}} (t-t') \mathcal{A}_{\vec{k}}(t') d't - \xi_{\vec{k}}(t)}_{\vec{k}} \big] \times \prod_{\vec{k}} \delta \big[\pi_{i,\vec{k}} - \dot{\mathcal{A}}_{i,\vec{k}}\big] \end{split}$$

Langevin Equation

Probability Distribution of Bath

Use functional Gaussian integral to convert the quadratic term in R to a quadratic term in ξ .

$$\exp\left\{-\frac{1}{2}\int d^{4}x_{1}d^{4}x_{2}R(x_{1})\mathcal{N}(x_{1}-x_{2})R(x_{2})\right\} = \frac{\int D\xi \exp\left\{-\frac{1}{2}\int d^{4}x_{1}d^{4}x_{1}\xi(x_{1})\mathcal{N}^{-1}(x_{1}-x_{2})\xi(x_{2})+i\int d^{4}xR(x)\xi(x)\right\}}{\int D\xi \exp\left\{-\frac{1}{2}\int d^{4}x_{1}d^{4}x_{2}\xi(x_{1})\mathcal{N}^{-1}(x_{1}-x_{2})\xi(x_{2})\right\}}$$

$$= P[\xi] \text{ up to normalization}$$

In momentum space, $\langle\langle\xi\rangle\rangle=0$ and $\langle\langle\xi_{\vec{k}}(t)\xi_{\vec{k'}}(t')\rangle\rangle=\mathcal{N}_{\vec{k}}(t-t')\delta_{\vec{k},-\vec{k'}}$.

$$P[\xi] \propto \prod_{ec{k}} \exp \left\{ -rac{1}{2} \int dt_1 \int dt_2 \, \xi_{-ec{k}}(t_1) \, \mathcal{N}_{ec{k}}^{-1}(t_1-t_2) \, \xi_{ec{k}}(t_2)
ight\}$$

Classical Limit of Fluctuation-Dissipation Theorem

In the literature it is usually assumed that the noise kernal $\mathcal{N}_{\vec{k}}(t-t')$ has very short time correlation, i.e.

$$\mathcal{N}_{ec{k}}(t-t') \propto \delta(t-t')$$

which entails that

$$i\Sigma_{\vec{k}}(\vec{k},\omega) \coth \left[rac{eta\omega}{2}
ight] \propto {
m constant} \quad rac{{
m classical \; limit}}{{
m coth}\,\omega/2T \simeq 2T/\omega} \quad i\Sigma(\vec{k},\omega) \propto \omega$$

The classical limit is an ohmic spectral density, which in general is NOT compatible with a relativistic bath.

Langevin Equation Formal solution

Formal solution is

$$\mathcal{A}_{ec{k}}(t) = \mathcal{A}_{i,ec{k}}\dot{\mathcal{G}}_{ec{k}}(t) + \dot{\mathcal{A}}_{i,ec{k}}\mathcal{G}_{ec{k}}(t) + \int_0^t \mathcal{G}_{ec{k}}(t-t')\xi_{ec{k}}(t')dt'$$

The Green's function is

$${\cal G}_{ec k}(t) = -\int_{-\infty}^{\infty} rac{1}{(
u - i\epsilon)^2 - \omega_{ec k}^2 - \Sigma(
u, ec k)} rac{d
u}{2\pi} pprox e^{-rac{\Gamma_{ec k}}{2}t} rac{\sin(\Omega_{ec k}t)}{\Omega_{ec k}} + {\cal O}(g^2)$$

 $\Sigma_{\vec{k}}(\nu,\vec{k})$ is complex in general, inducing decay and correction to dispersion relation.

Amplitude & Energy

$$\begin{split} \mathcal{A}_{\vec{k}}(t) &= \frac{\mathcal{A}_{i,\vec{k}}\dot{\mathcal{G}}_{\vec{k}}(t) + \dot{\mathcal{A}}_{i,\vec{k}}\mathcal{G}_{\vec{k}}(t)}{\langle\langle\mathcal{A}_{\vec{k}}\rangle\rangle} + \int_{0}^{t}\mathcal{G}_{\vec{k}}(t-t') \, \xi_{\vec{k}}(t') \, dt'} \\ \overline{\langle\langle\mathcal{A}_{\vec{k}}\rangle\rangle} &= \overline{\mathcal{A}_{i,\vec{k}}\dot{\mathcal{G}}_{\vec{k}}(t) + \dot{\mathcal{A}}_{i,\vec{k}}\mathcal{G}_{\vec{k}}(t)}} + \int_{0}^{t}\mathcal{G}_{\vec{k}}(t-t')\langle\langle\langle\xi_{\vec{k}}(t')\rangle\rangle dt'} \\ \overline{\langle\langle\mathcal{A}_{\vec{k}}(t)\mathcal{A}_{-\vec{k}}(t)\rangle\rangle} &= \overline{\left(\frac{\mathcal{A}_{i,\vec{k}}\dot{\mathcal{G}}_{\vec{k}}(t) + \dot{\mathcal{A}}_{i,\vec{k}}\mathcal{G}_{\vec{k}}(t)}{\langle\mathcal{A}_{i,-\vec{k}}\dot{\mathcal{G}}_{-\vec{k}}(t) + \dot{\mathcal{A}}_{i,-\vec{k}}\mathcal{G}_{-\vec{k}}(t)}\right)} + \overline{\left(\frac{\mathcal{A}_{i,\vec{k}}\dot{\mathcal{G}}_{\vec{k}}(t) + \dot{\mathcal{A}}_{i,\vec{k}}\mathcal{G}_{\vec{k}}(t)}{\langle\mathcal{A}_{i,-\vec{k}}\dot{\mathcal{G}}_{-\vec{k}}(t) + \dot{\mathcal{A}}_{i,-\vec{k}}\mathcal{G}_{-\vec{k}}(t)}\right)} \int_{0}^{t}\mathcal{G}_{-\vec{k}}(t-t')\langle\langle\langle\xi_{\vec{k}}(t')\rangle\rangle dt'} \\ &+ \overline{\left(\frac{\mathcal{A}_{i,-\vec{k}}\dot{\mathcal{G}}_{-\vec{k}}(t) + \dot{\mathcal{A}}_{i,-\vec{k}}\mathcal{G}_{-\vec{k}}(t)}{\langle\mathcal{G}_{-\vec{k}}(t-t')\mathcal{G}_{-\vec{k}}(t-t')\langle\langle\langle\xi_{\vec{k}}(t')\rangle\rangle\rangle dt'}} \right)} \int_{0}^{t}\mathcal{G}_{\vec{k}}(t-t')\langle\langle\langle\xi_{\vec{k}}(t')\rangle\rangle dt'} \\ &+ \int_{0}^{t}\int_{0}^{t}\mathcal{G}_{\vec{k}}(t-t')\mathcal{G}_{-\vec{k}}(t-t')\mathcal{G}_{-\vec{k}}(t-t'')\langle\langle\langle\xi_{\vec{k}}(t')\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\rangle\rangle dt'} \\ &+ \frac{\mathcal{G}_{i,-\vec{k}}\dot{\mathcal{G}}_{-\vec{k}}(t) + \dot{\mathcal{G}}_{i,-\vec{k}}\mathcal{G}_{-\vec{k}}(t)}{\langle\xi_{\vec{k}}(t-t')\mathcal{G}_{-\vec{k}}(t-t'')\langle\langle\xi_{\vec{k}}(t'')\rangle\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\rangle} dt'} \\ &+ \frac{\mathcal{G}_{i,-\vec{k}}\dot{\mathcal{G}}_{-\vec{k}}(t) + \dot{\mathcal{G}}_{i,-\vec{k}}\mathcal{G}_{-\vec{k}}(t)}{\langle\xi_{\vec{k}}(t-t')\mathcal{G}_{-\vec{k}}(t-t'')\langle\langle\xi_{\vec{k}}(t'')\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\langle\langle\xi_{\vec{k}}(t'')\rangle\langle\xi_{\vec{k}}(t'')\rangle\langle\xi_{\vec{k}$$

Description of Misaligned Initial Condition

A initially non-zero amplitude state is described by a coherent state of the form

$$|\Delta
angle = \prod_{ec{k}} e^{\Delta_{ec{k}} \, b_{ec{k}}^\dagger - \Delta_{ec{k}}^* b_{ec{k}}} \, |0
angle$$

In the Schroedinger representation,

$$\Psi[a] = e^{i \int d^3 x \overline{\pi}_i(x) a(x)} \Psi_0[a - \overline{\mathcal{A}}_i]$$

The density matrix for a pure, misaligned initial state is

$$\rho_a[a,a';0] = \Psi^*[a']\Psi[a]$$

Experimental Constraints

Image Credit: Semertzidis and Youn (2021)

• Let the Hamiltonian be $H = H_0 + H_I$. In the interaction picture, the density matrix is

$$\hat{\rho}_I(t) = e^{iH_0t}\hat{\rho}(t)e^{-iH_0t}$$

• Taking time derivative gives the equation of motion.

$$\dot{\hat{\rho}}(t) = -i[H_I(t), \hat{\rho}_I(t)]$$

Formal solution is found by integrating, inserting the solution back, and iterating.
 After one iteration,

$$\dot{\hat{\rho}}(t) = -i[H_I, \hat{\rho}_I(0)] - \int_0^t [H_I(t), [H_I(t'), \hat{\rho}_I(t')]]dt'$$

Quantum Master Equation Reduced Density Matrix

• Trace over χ to find the reduced density matrix of $\hat{
ho}_{Ia}=\mathrm{Tr}_{\chi}\hat{
ho}_{I}(t)$

$$\begin{split} \dot{\hat{\rho}}_{Ia}(t) &= -g^2 \int_0^t dt' \int d^3x \int d^3x' \Big\{ \hat{a}_I(x) \, \hat{a}_I(x') \, \hat{\rho}_{Ia}(t') \, \, G^>(x-x') \\ &+ \hat{\rho}_{Ia}(t') \, \hat{a}_I(x') \, \hat{a}_I(x) \, G^<(x-x') - \hat{a}_I(x) \, \hat{\rho}_{Ia}(t') \, \hat{a}_I(x') \, G^<(x-x') - \hat{a}_I(x') \, \hat{\rho}_{Ia}(t') \, \hat{a}_I(x') \, \hat{\rho}_{Ia}(t') \, \hat{a}_I(x') \, G^>(x-x') \Big\} \\ & \text{where} \end{split}$$

$$G^{>}(x-x') = \operatorname{Tr}_{\chi} \hat{\rho}_{\chi}(0) \mathcal{O}_{\chi}(x) \mathcal{O}_{\chi}(x') \qquad G^{<}(x-x') = \operatorname{Tr}_{\chi} \hat{\rho}_{\chi}(0) \mathcal{O}_{\chi}(x') \mathcal{O}_{\chi}(x)$$

• Upon taking the trace over the χ degrees of freedom, the first term $-i[H_I, \hat{\rho}_I(0)]$ vanishes under the assumption that the thermal density matrix of the environmental fields is even under parity, hence $\operatorname{Tr}_{\chi}(\mathcal{O}_{\chi}\hat{\rho}(0)) = 0$.

Markov approximation

This approximation entails replacing $\rho_{Ia}(t') \rightarrow \rho_{Ia}(t)$ in the time integral.

• Take the first term in last page as an exmaple.

$$-g^2 a(\vec{x},t) \int_0^t \frac{d\mathcal{K}(t')}{dt'} \, \hat{
ho}_{Ia}(t') \, dt' \; \; ; \; \; \mathcal{K}(t') \equiv \int_0^{t'} a(\vec{x}',t'') \, G^>(\vec{x}-\vec{x}',t-t'') dt''$$

Integrate by parts.

$$-g^2 a(ec{x},t) \mathcal{K}(t) \hat{
ho}_{Ia}(t) + g^2 a(ec{x},t) \int_0^t \mathcal{K}(t') \, rac{d\hat{
ho}_{Ia}(t')}{dt'} dt'$$

• In the second term $d\hat{\rho}_{la}(t')/dt' \propto g^2$ so this term yields a contribution that is formally of order g^4 and can be neglected to second order.

$$\dot{\hat{\rho}}(t) = -i[H_I, \hat{\rho}_I(0)] - \int_0^t [H_I(t), [H_I(t'), \hat{\rho}_I(t')]]dt'$$

Rotating wave approximation

• The (ALP) field in the interaction picture $a_I(\vec{x}, t)$ is

$$a_{I}(\vec{x},t) = \frac{1}{\sqrt{V}} \sum_{\vec{k}} \frac{1}{\sqrt{2\omega_{k}}} \left[b_{\vec{k}} e^{-i\omega_{k}t} e^{i\vec{k}\cdot\vec{x}} + b_{\vec{k}}^{\dagger} e^{i\omega_{k}t} e^{-i\vec{k}\cdot\vec{x}} \right]$$

where the operators $b_{ec k}, b_{ec k}^\dagger$ do not depend on time, and $\omega_k = \sqrt{k^2 + m_a^2}.$

- In writing the products $a_I(\vec{x}, t)$, $a_I(\vec{x}', t')$, there two types of terms.
 - Slow terms, $b_{\vec{q}}^{\dagger} b_{\vec{q}} e^{i\omega_q(t-t')}$
 - Fast terms, $b_{\vec{a}}^{\dagger}b_{-\vec{a}}^{\dagger}e^{2i\omega_qt}e^{i\omega_q(t-t')}$; $b_{\vec{q}}\,b_{-\vec{q}}\,e^{-2i\omega_qt}\,e^{-i\omega_q(t-t')}$
- The extra rapidly varying phases $e^{\pm 2i\omega_q t}$ lead to rapid dephasing on time scales $\simeq 1/\omega_q$ and do not yield resonant (nearly energy conserving) contributions.
- Keeping only the slow terms defines the rotating wave approximation.

Amplitude & Variance

Trace over the time-dependent reduced density matrix.

Amplitude

$$rac{d}{dt}\langle b_{ec{k}}
angle(t) = \left[-i\,\Delta_k(t) - rac{\Gamma_k(t)}{2}
ight]\langle b_{ec{k}}
angle(t) \qquad rac{d}{dt}\langle b_{ec{k}}^\dagger
angle(t) = \left[i\,\Delta_k(t) - rac{\Gamma_k(t)}{2}
ight]\langle b_{ec{k}}^\dagger
angle(t)$$

Variance

$$\frac{dN_{q}(t)}{dt} = \operatorname{Tr}_{a} \left\{ b_{\vec{q}}^{\dagger} b_{\vec{q}} \dot{\hat{\rho}}_{Ia}(t) \right\} = -\Gamma_{q}(t) N_{q}(t) + \Gamma_{q}^{<}(t)$$

$$\frac{d}{dt} \langle b_{\vec{k}} \ b_{-\vec{k}} \rangle(t) = \left[-2i \ \Delta_{k}(t) - \Gamma_{k}(t) \right] \langle b_{\vec{k}} \ b_{-\vec{k}} \rangle(t) \xrightarrow{h.c.} \langle b_{\vec{k}}^{\dagger} \ b_{-\vec{k}}^{\dagger} \rangle(t)$$

Quantum Master Equation Long Time Limit

• where $\Gamma_q = \Gamma_q^> - \Gamma_q^<$.

$$egin{aligned} \Delta_q(t) &= rac{g^2}{2\omega_q} \int rac{dq_0}{2\pi} \, arrho(q_0,q) rac{\left[1 - \cos[(\omega_q - q_0)t]
ight]}{(\omega_q - q_0)} \ \Gamma_q^>(t) &= rac{g^2}{\omega_q} \int rac{dq_0}{2\pi} \, arrho(q_0,q) \left[1 + n(q_0)
ight] rac{\sin[(\omega_q - q_0)t]}{(\omega_q - q_0)} \ \Gamma_q^<(t) &= rac{g^2}{\omega_q} \int rac{dq_0}{2\pi} \, arrho(q_0,q) \, n(q_0) rac{\sin[(\omega_q - q_0)t]}{(\omega_q - q_0)} \end{aligned}$$

• Results are recovered in long time limit.

Quantum Master Equation A complementary check

 Solve the quantum master equation with Markove approximation, rotating wave approximation.

$$\dot{\hat{\rho}}_{I}(t) = -i[H_{I}, \hat{\rho}_{I}(0)] - \int_{0}^{t} [H_{I}(t), [H_{I}(t'), \hat{\rho}_{I}(t')]]dt'$$

- Recover decay rate, self energy, decoherence, thermalization
 - More convenient to study coherence.
- Because of the breakdown of approximations, the QME approach misses
 - Inverted phase transition
 - Requirements of higher order derivative terms

Linear Response Theory

Mean field approximation

① Decompose a coherent ALP as it amplitude expectation value \overline{a} and quantum fluctuations \widetilde{a} around the amplitude.

$$a(\vec{x},t) = \overline{a}(\vec{x},t) + \widetilde{a}(\vec{x},t)$$

2 Neglect the fluctuations $\widetilde{a}(x)$ (mean field approximation).

$$\mathcal{L}_I = -g \, \overline{a} \, \mathcal{O}_{\chi}$$
 or $H_I(t) = g \, \int d^3x \, \overline{a}(\vec{x},t) \, \mathcal{O}_{\chi}(\vec{x})$

3 Result in a system driven by a classical source

$$\rho_{\chi}(t) = U(t, t_0) \, \rho_{\chi}(t_0) \, U^{-1}(t, t_0)$$

with $U(t, t_0)$ being the evolution operator.

$$i\frac{d}{dt}U(t,t_0)=(H_\chi+H_I(t))U(t,t_0)$$
; $U(t_0,t_0)=1$

Linear Response Theory

4 Up to the linear order, the expectation value $\langle \mathcal{O}_\chi(\vec{x}) \rangle(t) = \mathrm{Tr} \big(\mathcal{O}_\chi(\vec{x}) \, \rho_\chi(t) \big)$ is

$$\langle \mathcal{O}_{\chi}(\vec{x}) \rangle(t) = \langle \mathcal{O}(\vec{x}) \rangle(t_0) + \int d^3x' \int_{t_0}^t \Xi(\vec{x} - \vec{x}', t - t') \, \overline{a}(\vec{x}', t') \, dt' + \cdots$$

where the linear response kernel, namely the dynamical susceptibility, is

$$\Xi(\vec{x}-\vec{x}',t-t') = -ig \operatorname{Tr}\left(\left[\mathcal{O}_{\chi}^{(H_{\chi})}(\vec{x},t),\mathcal{O}_{\chi}^{(H_{\chi})}(\vec{x}',t')\right] \rho_{\chi}(t_{0})\right) ; \quad t > t'$$

The superscript (H_{χ}) means Heisenberg picture in absence of the source \bar{a} .

5 Structure of $\Xi(x-x')$ and self-energy $\Sigma(x-x')$ are similar.

$$\Sigma(\vec{x}-\vec{x}',t-t')=g\,\Xi(\vec{x}-\vec{x}',t-t')$$

A Complementary Check Exploit the exact relation

Complementary Check Using The Exact Relation

The exact relation in momentum space

$$\langle \mathcal{O}_\chi(ec{x},t)
angle = -rac{1}{g} \Big[rac{\partial^2}{\partial t^2} \, \overline{a}(ec{x},t) + k^2 \overline{a}(ec{x},t) + m_{0a}^2 \, \overline{a}(ec{x},t) \Big]$$

Plug in

$$\overline{a}(\vec{x},t) = \int \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\cdot\vec{x}} \,\overline{a}_k(t), \qquad \overline{a}_k(t) = \left[A_k e^{-i\omega_k(t-t_0)} + A_k^* e^{i\omega_k(t-t_0)}\right] e^{-\frac{\Gamma_k}{2}(t-t_0)}$$

Result in

$$\langle \mathcal{O}_{\chi}(\vec{x},t) \rangle_k = \frac{1}{g} [\Omega_k^2 - k^2 - m_{0a}^2] e^{-i\Omega_k(t-t_0)} + h.c.$$
 $\Omega_k = \omega_k - i\frac{\Gamma_k}{2}$

 Ω_k satisfies $\Omega_k^2 - k^2 - m_{0a}^2 = \Sigma_k(\Omega_k)$. Thus, to leading order,

$$\langle \mathcal{O}_{\chi}(\vec{x},t) \rangle_{k} = \frac{1}{g} \Sigma_{k}(\Omega_{k}) e^{-i\Omega_{k}(t-t_{0})} + h.c. \approx \frac{1}{g} [\Sigma_{k}(\omega_{k}) \overline{a}_{k}(t) + \Gamma_{k} \dot{\overline{a}}_{k}(t)]$$

