



#### **Results from sub-GeV dark matter searches with SENSEI**

Kelly Stifter, for the SENSEI collaboration PHENO 23 conference 5/8/2023



#### **The SENSEI collaboration**

**Fermilab:** A. M. Botti, G. Cancelo, F. Chierchie, M. Crisler, A. Drlica-Wagner, J. Estrada, G. Fernandez Moroni, N. Saffold, M. Sofo Haro, L. Stefanazzi, K. Stifter, J. Tiffenberg, S. Uemura

Stony Brook: P. Adari, R. Essig, A. Singal, Y. Wu

Tel Aviv: L. Barak, E. Etzion, Y. Korn, A. Orly, T. Volansky

U. Oregon: A. Desai, T.-T. Yu

Buenos Aires: M. Cababie, S. Perez, D. Rodrigues

U.C. Berkeley: I. M. Bloch

SNOLAB: I. Lawson, S. Luoma, S. Scorza

LBNL: S. Holland

Fully funded by Heising-Simons Foundation + R&D support from Fermilab





\*Sub-Electron-Noise Skipper-CCD Experimental Instrument



Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):





\*Sub-Electron-Noise Skipper-CCD Experimental Instrument



Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):





\*Sub-Electron-Noise Skipper-CCD Experimental Instrument



**Fermilab** 

Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):



\*Sub-Electron-Noise Skipper-CCD Experimental Instrument



Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):



6

\*Sub-Electron-Noise Skipper-CCD Experimental Instrument



#### Silicon charge-coupled devices (CCDs) w/ Skipper amplification (designed by LBNL):



#### Specifications:

- Energy threshold of Si bandgap (~1.1 eV)
- Low dark current (~10<sup>-4</sup> e<sup>-</sup>/pix/day)
- Sub-electron (~0.1e<sup>-</sup>) readout noise

#### Access to low-mass searches:

- Electron scattering of 1-1000 MeV DM
- Nuclear scattering of 1-1000 MeV DM via Migdal effect
- Absorption of 1-1000 eV DM
- Scattering of milli-charged particles
- Etc...



## ⊙⁄ensei

#### **Current status: two science-capable SENSEI setups**

#### SENSEI@MINOS



#### SENSEI@SNOLAB



#### Will show new results/data from both detectors today



#### SENSEI@MINOS



#### One CCD module installed in copper cryostat: ~1.925 g, operated at 135 K

**Shielding:** inner and outer layers of lead shielding, underground site at FNAL in MINOS cavern (~107 m)

#### Intersects with NuMI beamline



### Millicharged particle (mCP) search in SENSEI@MINOS



Proton collisions w/ fixed target can produce mCPs collinear w/ NuMI beamline:





## Millicharged particle (mCP) search in SENSEI@MINOS



but extending up to 6e

 $10^{3}$ 

 $5e^{-}$ 

9.23

0

 $4e^{-}$ 

9.10

0

 $6e^{-}$ 

9.39

0

0.331 0.338



SPI

## Millicharged particle (mCP) search in SENSEI@MINOS



isei

#### SENSEI@SNOLAB



**CCDs installed in copper cryostat:** 6 CCDs (~13 g) operating (out of eventual ~100g),  $6144 \times 1024$  pixels, 15 µm pitch, 675 µm thick

Shielding: 3" of lead, 20" of polyethylene and water, 2 km of granite overburden

Installation: 4-7/2021, Commissioning: 10/2021-8/2022, Science: 9/2022-4/2023





#### Data collection, reconstruction, and analysis

# **20 hour exposures:** 129 images, no binning, ~50% hidden for bias mitigation

- 1. Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels  $\geq 1 e^{-1}$
- 3. Apply masks to images to remove known backgrounds
- 4. Remove clusters with pixels overlapping a mask
- 5. Remove high-background cluster shapes







#### Data collection, reconstruction, and analysis

# **20 hour exposures:** 129 images, no binning, ~50% hidden for bias mitigation

- 1. Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels  $\geq 1 e^{-1}$
- 3. Apply masks to images to remove known backgrounds
- 4. Remove clusters with pixels overlapping a mask
- 5. Remove high-background cluster shapes







### Data collection, reconstruction, and analysis

# **20 hour exposures:** 129 images, no binning, ~50% hidden for bias mitigation

- 1. Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels  $\geq 1 e^{-1}$
- 3. Apply masks to images to remove known backgrounds
- 4. Remove clusters with pixels overlapping a mask
- 5. Remove high-background cluster shapes





#### **Dark matter limit setting**

**Signal model:** generate expected DM events per electron channel using QEdark (upper right) and other calculations given astrophysical parameters from <u>PhystatDM</u> and ionization model (lower right)

**Bin by shape:** split each electron channel into bins based on number of pixels and/or shape of cluster

**Exposure:** determine effective exposure for each bin using Monte Carlo simulation given actual masks and charge diffusion parameters measured in SENSEI@MINOS

**Backgrounds:** calculate expected coincidence background in each bin given measured 1e<sup>-</sup> density

**Limit:** Determine a combined likelihood over all bins to set 90% C.L. upper limits in cross section-DM mass parameter space







#### **Dark matter-electron scattering limits**

⊙⁄ensei

**Data:** 45 unblinded commissioning images, 37 hidden images, 2-10 e<sup>-</sup> channels

**Exposure:** combined datasets amount to ~70 g-days per electron channel with current masks

Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

Paper in preparation to present full results





## ⊘⁄ensei

### **Dark matter-electron scattering limits**

**Data:** 45 unblinded commissioning images, 37 hidden images, 2-10 e<sup>-</sup> channels

**Exposure:** combined datasets amount to ~70 g-days per electron channel with current masks

Three limits: blinded dataset, commissioning dataset, and combined commissioning + blinded exposure

Paper in preparation to present full results





### **Dark matter absorption limit**

**Data:** 45 unblinded commissioning images, 37 hidden images, 2-10 e<sup>-</sup> channels

**Exposure:** combined datasets amount to ~70 g-days per electron channel with current masks

**Two limits:** combined commissioning + blinded exposure, recast 2020 results w/ new ionization model, limit-setting procedure from <u>arXiV:1608.02123</u>

# Paper in preparation to present full results





### **Future SENSEI plans**



# Ongoing hardware intervention at SNOLAB to:

- Repair failing cryocooler
- Install additional CCDs
- Improve noise environment

## Followed by commissioning, and start of Science Run 2

#### Pursuing additional measurements and analyses with both SNOLAB and MINOS data:

- 1 e<sup>-</sup> studies
- Alternate interactions, including Migdal, solar reflection, etc.
- Alternate signatures, including daily modulation





#### More to come from Skipper-CCDs!



Oscura experiment plans to deploy 10 kg skipper-CCD array to provide unprecedented sensitivity to sub-GeV DM

See arXiV:2304.04401, arXiV:2304.08625, B. Cervantes's UCLA DM 2023 talk



#### Conclusions

- The SENSEI collaboration has two detectors utilizing Si Skipper-CCDs to perform world-leading science:
  - SENSEI@MINOS has set new, world-leading limits on millicharged particles from 30 – 380 MeV
  - SENSEI@SNOLAB completed its first science run, and set world-leading limits on sub-GeV dark matter interacting with electrons
- Many more exciting results to come, paving the way for the next generation of CCD experiments



#### **Thanks for listening!**





**SENSEI** collaboration at unblinding meeting

Thanks to my collaborators for all their hard work that helped us reach these milestones!







## **Back up**

#### The search for sub-GeV dark matter

- Direct detection experiments have historically focused on WIMP DM with masses down to O(GeV)
  - Well motivated ("WIMP miracle"), experimentally accessible (nuclear recoils)
- New complementary searches for low masses
  - Theoretical interest in dark sectors
- Need technologies with lower thresholds
  - One promising direction: Skipper-CCDs for electron recoil, with thresholds near the silicon bandgap





### Charge coupled devices (CCDs)

- Charge coupled devices (CCDs) are integrated circuits that produce images of the energy depositions in a pixelated Si substrate
- Holes drift through substrate and collect in pixels near the surface
- Charge packets are shifted to a shared amplifier (1 per quadrant) for readout
- CCDs for DM are designed by LBNL MSL, based on fully-depleted CCD designs proven in astronomy
  - High-efficiency charge collection and transport, low dark current
  - Thickness limited only by capabilities of commercial foundries



#### **Skipper readout**



- Conventional CCDs are limited to noise of ~2e<sup>-</sup>
  - Charge moved to the sense node must be drained
  - You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple non-destructive measurements!



### **Skipper readout**



- Conventional CCDs are limited to noise of ~2e<sup>-</sup>
  - Charge moved to the sense node must be drained
  - You can integrate longer, but you cannot beat the 1/f noise
- The Skipper amplifier lets you make multiple non-destructive measurements!



#### **Sub-electron readout noise in Skippers**

⊘∕ensei

- Skipper noise scales as  $1/\sqrt{N}$ :
  - Trade charge resolution for speed
- We can count *single electrons*: self-calibrating charge measurement across wide energy range



### **History of SENSEI results**





### **SENSEI@SNOLAB** data selection

# Remove quadrants of CCDs that exhibit unusual behavior:

- Consistently high 1 e<sup>-</sup> density
- Low readout gain
- High electronic interference
- High charge transfer inefficiency

## Remove images with unusually high 1 e<sup>-</sup> density:

Flag quads with *p*-value < X, where X is such that we expect to reject < 0.5 quads, remove images with > 1 rejected quads







### **CCDs are operating well**

**20 hour exposures:** 129 images, no binning, ~50% blinded for bias mitigation

300 Skipper samples  $\rightarrow$  7.3 hours readout, noise of ~0.14 e<sup>-</sup>

**3 hour "clear"** following each image to sweep charge from active area

Temperature variations of **135 K-155 K** due to failing cryocooler

- 1 e<sup>-</sup> density (after cuts): ~2 x 10<sup>-4</sup> e<sup>-</sup>/pixel
- No dark rate measurement performed





### **Cluster reconstruction + selection**

- 1. Data quality cuts to remove anomalous images
- 2. Cluster any contiguous pixels  $\ge 1 e^{-1}$
- 3. Apply masks to images to remove known backgrounds
  - Electronic noise
  - Cross-talk
  - Edges of CCDs
  - Bad pixels and columns
  - Serial register events
  - Charge transfer inefficiencies (size varies by charge)
  - Region surrounding any ≥1e<sup>-</sup> pixels (size varies by charge)
- 4. Remove clusters with pixels overlapping a mask
- 5. Remove high-background cluster shapes





#### **Detailed SENSEI@SNOLAB limit plots**



SENSEI@SNOLAB 90% exclusion limits on dark matter interacting with electrons



isei

## **Oscura: 10 kg Skipper-CCD experiment**

- Science goal: electron recoil low-mass direct DM search (1 MeV-1 GeV)
- Technology: skipper-CCD array at underground lab (planning for SNOLAB)
- R&D: scale the existing technology towards a 10 kg experiment
- Oscura review paper: <u>arXiv:2202.10518</u>





Detector payload

#### **Oscura: Early Science (mCP search)**







Number of fake tracks per day produced by random coincidences of uncorrelated single pixel hits

| Threshold | doublets $(b=2)$      | triplets $(b = 3)$     | Pbkg                |
|-----------|-----------------------|------------------------|---------------------|
| $1e^{-}$  | 3822                  | 11.4                   | $3 \times 10^{-4}$  |
| $2e^-$    | 0.031                 | $2.72 \times 10^{-7}$  | $8.6 \times 10 - 7$ |
| 3e-       | $9.06 \times 10^{-5}$ | $4.17 \times 10^{-11}$ | $4.6 	imes 10^{-8}$ |

If doing tracking, we are essentially background-free!



Exclusion limits are promising!

Adapted from arXiV:2304.04401, arXiV:2304.08625, B. Cervantes's UCLA DM 2023 talk

