Ab initio all-electron calculation for sub-GeV dark matter direct detection

with emphasis on a new code, Quantum Chemistry Dark (QCDark)

Aman Singal

C.N. YANG INSTITUTE for Theoretical Physics

Outline

SUB-GEV DARK MATTER DIRECT DETECTION

ELECTRONIC EXCITATIONS IN SEMICONDUCTORS

EFFECTS OF INCLUDING CORE ORBITALS

QUANTUM CHEMISTRY DARK (QCDARK)

Outline

SUB-GEV DARK MATTER DIRECT DETECTION

ELECTRONIC EXCITATIONS IN SEMICONDUCTORS

EFFECTS OF INCLUDING CORE ORBITALS

QUANTUM CHEMISTRY DARK (QCDARK)

Experiments probing sub-GeV dark matter-electron scattering

Experiments probing sub-GeV dark matter-electron scattering

Need to understand the theoretical rates well!

Outline

SUB-GEV DARK MATTER DIRECT DETECTION

ELECTRONIC EXCITATIONS IN SEMICONDUCTORS

EFFECTS OF INCLUDING CORE ORBITALS

QUANTUM CHEMISTRY DARK (QCDARK)

Dark matter-electron scattering rates

$$\frac{dR}{d\Delta E} = N_T \int d^3q \, \frac{1}{q} \int d^3v \, n_{\chi} v \, f(\vec{v}) \, \frac{d\sigma}{d\Delta E},$$

$$\frac{d\sigma}{d\Delta E} \sim \frac{\overline{\sigma}}{2v^2\mu^2} |F_{\chi}(q)|^2 |F_{\text{material}}(q, \Delta E)|^2 \Theta(v - v_{\text{min}})$$

Dark matter-electron scattering rates

$$\frac{dR}{d\Delta E} = N_T \int d^3q \, \frac{1}{q} \int d^3v \, n_{\chi} v \, f(\vec{v}) \, \frac{d\sigma}{d\Delta E},$$

$$\frac{d\sigma}{d\Delta E} \sim \frac{\overline{\sigma}}{2v^2\mu^2} |F_{\chi}(q)|^2 |F_{\text{material}}(q, \Delta E)|^2 \Theta(v - v_{\text{min}})$$

We calculate the target material response for semiconductors

Material response in crystals, crystal form factor

- DM strikes electron in any occupied band.
- electron gets excited, leaving hole behind!

Material response in crystals, crystal form factor

- DM strikes electron in any occupied band.
- electron gets excited, leaving hole behind!

• $|f_{crystal}(q, \Delta E)|^2 \sim$ total transition probability of exciting an electron from any occupied shell to any unoccupied shell.

Material response in crystals, crystal form factor

- DM strikes electron in any occupied band.
- electron gets excited, leaving hole behind!
 - We call this crystal form factor!
- $|f_{\text{crystal}}(q, \Delta E)|^2 \sim$ total transition probability of exciting an electron

from any occupied shell to any unoccupied shell.

Calculating crystal form factor

- Need to calculate electron wavefunctions in crystals many body problem.
- We use density functional theory (DFT)
 - > converts many body problem to non-linear single electron problem.
- Generally, use plane waves as basis for calculating wavefunctions.

Outline

SUB-GEV DARK MATTER DIRECT DETECTION

ELECTRONIC EXCITATIONS IN SEMICONDUCTORS

EFFECTS OF INCLUDING CORE ORBITALS

QUANTUM CHEMISTRY DARK (QCDARK)

Pseudopotentials

- Core electrons do not participate in bonding and do not get excited.
 - QEDark: models them with an effective potential.
- BUT: this leads to wrong wavefunctions for valence electrons at small radii (large momenta).

Inclusion of core orbitals, all–electron effects

- Inclusion of core orbitals
 - → corrects to valence and conduction bands near nuclei
 - → (all–electron effects)
- EXCEED-DM adds core electrons after pseudopotential calculation
 - → all–electron reconstruction

QCDark: Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, AS, Cheng Zhen (to appear)

QEDark: Essig, Fernandez-Serra, Mardon, Soto, Yu (1509.01598)

Inclusion of core orbitals, all–electron effects

- Inclusion of core orbitals
 - corrects to valence and conduction bands near nuclei
 - \rightarrow (all-electron effects)
- EXCEED-DM adds core electrons after pseudopotential calculation
 - → all–electron reconstruction
- New tool:

 ab-initio calculation including core orbitals
 'Quantum Chemistry Dark (QCDark)'*

*Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, **Aman Singal**, Cheng Zhen (to appear)

 r_c pseudo

QCDark: Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, AS, Cheng Zhen (to appear)

QEDark: Essig, Fernandez-Serra, Mardon, Soto, Yu (1509.01598)

Outline

SUB-GEV DARK MATTER DIRECT DETECTION

ELECTRONIC EXCITATIONS IN SEMICONDUCTORS

EFFECTS OF INCLUDING CORE ORBITALS

QUANTUM CHEMISTRY DARK (QCDARK)

Quantum Chemistry Dark, QCDark

- Based off PySCF
 - Uses real space basis functions instead of plane waves
 - Wavefunctions are linear combinations of atomic orbitals
- QCDark to soon be available on GitHub!

All-electron effects in the crystal form factor

All—electron effects (AE) increases scattering rates

- All-electron allows correct modelling of dark matter-electron scatterings with large momentum transfer, q
- Large (order of magnitude) enhancement of rates for larger dark matter mass at high ΔE

QCDark: Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, AS, Cheng Zhen (to appear)

QEDark: Essig, Fernandez-Serra, Mardon, Soto, Yu (1509.01598)

Theory uncertainties in dark matter-electron scattering rates

Theory uncertainties in dark matter-electron scattering rates

Theory uncertainties in dark matter-electron scattering rates

Rate calculation with QCDark

Conclusion

- Large ongoing experimental effort in sub-GeV dark matter direct detection –
 dark matter-electron scattering experiments (SENSEI, DAMIC, SuperCDMS, ...)
- Need to understand theory better
 - Inclusion of core orbitals increases expected dark matter—electron scattering rates at high energy transfer ΔE
 - Also need to properly analyze theory uncertainties associated with these rates
- Quantum Chemistry Dark (QCDark) does a fully *ab-initio* calculation including core orbitals using PySCF as base for density functional theory.
 - We perform a systematic analysis of theory uncertainties in dark matter—electron scattering rates in Si and Ge.

Conclusion

- Large ongoing experimental effort in sub-GeV dark matter direct detection –
 dark matter-electron scattering experiments (SENSEI, DAMIC, SuperCDMS, ...)
- Need to understand theory better
 - Inclusion of core orbitals increases expected dark matter—electron scattering rates at high energy transfer ΔE
 - Also need to properly analyze theory uncertainties associated with these rates
- Quantum Chemistry Dark (QCDark) does a fully *ab-initio* calculation including core orbitals using PySCF as base for density functional theory.
 - We perform a systematic analysis of theory uncertainties in dark matter—electron scattering rates in Si and Ge.

Thank You!

Comparison of available codes

Code	Calculation Type	Screening	All-electron effects
QEDark	CFF ¹	None ²	None
DarkELF	Dielectric function ³	Numerical	None
EXCEED-DM	CFF + Dielectric	Numerical + Analytical	Reconstruction
QCDark	CFF	Analytical	Ab-initio

- 1. Refers to crystal form factor.
- 2. It is trivial to add analytical screening to QEDark, and all plots in this presentation included it.
- 3. DarkELF consists of precalculated look-up tables and does not offer computation for new prospective materials.

QCDark: Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, AS, Cheng Zhen (to appear)

QEDark: Essig, Fernandez-Serra, Mardon, Soto, Yu (1509.01598)

DarkELF: Knapen, Kozaczuk, Lin (2101.08275, 2104.12786); see also Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berggren (2101.08263)

Comparison of available codes

QCDark: Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, AS, Cheng Zhen (to appear)

QEDark: Essig, Fernandez-Serra, Mardon, Soto, Yu (1509.01598)

DarkELF: Knapen, Kozaczuk, Lin (2101.08275, 2104.12786); see also Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berggren (2101.08263)

Screening

 DarkELF (2021) showed electrostatic screening effects are important at low charge ionization.

$$|f_{\text{crystal}}(q, \Delta E)|^2 \rightarrow \frac{|f_{\text{crystal}}(q, \Delta E)|^2}{|\epsilon(q, \Delta E)|^2}$$

QCDark: Cyrus Dreyer, Rouven Essig, Marivi Fernandez-Serra, AS, Cheng Zhen (to appear)

QEDark: Essig, Fernandez-Serra, Mardon, Soto, Yu (1509.01598)

DarkELF: Knapen, Kozaczuk, Lin (2101.08275, 2104.12786); see also Hochberg, Kahn, Kurinsky, Lehmann, Yu, Berggren (2101.08263)

Screening

• DarkELF (2021) showed electrostatic screening effects are important at low charge ionization.

$$|f_{\mathrm{crystal}}(q, \Delta E)|^2 \rightarrow \frac{|f_{\mathrm{crystal}}(q, \Delta E)|^2}{|\epsilon(q, \Delta E)|^2}$$
We call this the dielectric function!

