Visible Signatures of Dark Photon Decays in LDMX

Tyler Horoho, on behalf of the LDMX collaboration Phenomenology Symposium 5/9/2023

Thermal Relic Dark Matter

- A simple and predictive model of dark matter
- Dark matter and ordinary matter were in thermal equilibrium in the early universe, and there was a "freeze out" as the universe expanded and cooled
- WIMPs are well-motivated, but the accessible parameter space is shrinking

Light Dark Matter

Simplest prediction includes a new broken U(1) symmetry (generating a dark photon, A') that kinetically mixes with the standard model photon.

Heavy charged leptons L carrying $U(1)_d$ charge

LDMX: The Light Dark Matter experiment

- DM production identified through missing energy/momentum in the detector
- 4 GeV and 8 GeV e- beam provided by SLAC
- For more info on the missing momentum search at LDMX, see V. Dutta's talk in **BSM VIII**
 - This talk already happened, but slides are posted!

Visible signatures in LDMX

- As a compliment to the missing momentum search, LDMX is capable of searching for the sudden appearance of energy/momentum in the calorimeter
 - Sensitive to broad range of models minimal dark photon, ALPs, SIMPs, etc.
 - $^{\circ}$ Viable decay channel if $2 \mathrm{m_e} < \mathrm{m_{A'}} < 2 \mathrm{m_{\chi}}$

A trigger for visible signatures

- Looking for low background rate, high signal efficiency set of conditions
- Trigger on <1.5 GeV upstream of some ECal layer for 4 GeV beam energy
 - LDMX missing energy search triggers on <1.5 GeV in whole ECal

A' decays in the ECal/HCal

After trigger, we break up the analysis into three parts based on energy constraints in the detector subsystems due to different backgrounds to veto in ECal/HCal. ECal region probes more interesting region of parameter space.

	ECal _{back half}	HCal	ECal _{back half} + HCal
ECal	>2.5 GeV	<2.5 GeV	_
HCal	<2.5 GeV	>2.5 GeV	_
Intermediate	<2.5 GeV	<2.5 GeV	>2.5 GeV

This talk will focus on the ECal analysis

Backgrounds to veto

Backgrounds to veto

A BDT for vetoing PN events in the ECal

- Trained a boosted decision tree on 21 input features from simulated photonuclear background events and signal events with two A' masses (5, 50 MeV)
 - All input events pass visibles trigger and have >2.5 GeV deposited in ECal_{back half}
 - Input features were a mix of spatial distributions of hits and energy deposition / # of hits

BDT veto performance

Histogram of BDT output for signal and background (left). Signal efficiency vs background efficiency with BDT discriminator threshold of 0.99 shown as star (right).

Signal efficiency and background rejection

A high signal efficiency can be maintained over a large region of the ECal while achieving a 10⁵ level of photonuclear background rejection.

Other veto handles will be required to remove remaining background (recoil pT, information from HCal, etc.). This is still a work in progress!

	ECal Photonuclear
Electrons on Target (EoT) equivalent	2.1×10^{11}
Trigger, < 1.5GeV upstream of z=500mm	3.4×10^{6}
ECal downstream energy > 2.5GeV	2.0×10^{5}
Single track in tracker with 50MeV GeV	1.8×10^{5}
ECal BDT (> 0.99)	36

Zero background not expected for visibles search.

Reach Projections

- Projection assumes 9 background events (and 14 signal events) after full run
 - We will have more concrete reach projections when all backgrounds have been studied
 - We still have competitive reach with some level of background

arXiv: 1807.01730

Tyler Horoho Pheno 2023

Summary

- With WIMP dark matter accessible parameter space shrinking, there is a growing demand for searches at sub-GeV particle masses
- LDMX is a high sensitivity probe of sub-GeV thermal relic dark matter with sufficient background vetoing
- A proof of concept of a low-rate, high-efficiency trigger for displaced visible signatures has been presented, which further expands LDMX's sensitivity
- Photonuclear backgrounds for A' decays in the ECal can be rejected on the order of 10⁵ while maintaining a high signal efficiency
- Continuing work:
 - Further drive down photonuclear background levels
 - Explore other background sources γ→μ+μ-, γ→e+e-, target PN
 - A' decays in the HCal

Thank you!

University of Minnesota

Backup

Tyler Horoho Pheno 2023 16

Backup: LDMX Electromagnetic Calorimeter

40 X₀ Si-W sampling calorimeter based on CMS HGCal upgrade

- Dense, radiation hard, and has full shower containment
- Fast triggering
- Capable of MIP tracking

High granularity, so both transverse and longitudinal shower shapes can be used

to reject backgrounds

A. Martelli on behalf of CMS, arXiv: 1708.08234

Backup: LDMX Hadronic Calorimeter

- Layered steel and scintillator calorimeter based on design of Mu2e Cosmic Ray Veto
 - Scintillators have embedded wavelength shifting fibers read out by SiPMs
- Highly efficient and optimized veto for photonuclear processes that produce neutral hadrons

Backup: Training vs testing

Backup: Distribution of BDT input features (1/3)

Backup: Distribution of BDT input features

(2/3)

Backup: Distribution of BDT input features

(3/3)

Backup: What is an isolated hit?

Backup: Sensitivity

- All systems handling veto: expect < 1 background event for 4 x 10¹⁴ EOT with 4 GeV beam energy
- Even with 20x expected background events, LDMX would provide competitive sensitivity
 - We still want to optimize our sensitivity

Phase 1: 4 GeV, 10¹⁴ electrons Phase 2: 8 GeV, 10¹⁶ electrons

