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Figure from Snowmass 2021 White 
Paper (Brito et al., 2021)



How to Make Compact Objects
- Perturbations grow under linear theory, then moves to non-linear collapse
- SM forms stars due to dissipative processes
- Loss of kinetic energy -> particles fall into gravitational potential
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Dark Compact Objects

- What if we can have compact objects made up of purely dark matter?

- Dense clumps of dark matter can collapse if necessary conditions are met 

- Results in a landscape of objects: dark stars and dark black holes (!)

- Dark BHs from dissipative dark sectors can have subsolar masses! Interesting GW 
prospects… (see Shandera et al. 2018, Chang et al. 2019, Gurian et al. 2023)
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Chang et al. 2019: A Simplified History:
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1. Adiabatic free-fall: dark halo free-falls 
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1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

Chang et al. 2019: A Simplified History:

Gravity + 
Pressure



5

1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

Chang et al. 2019: A Simplified History:

Gravity + 
Pressure



5

1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

Chang et al. 2019: A Simplified History:

Gravity + 
Pressure



5

1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

Chang et al. 2019: A Simplified History:

Gravity + 
Pressure 



5

1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

Chang et al. 2019: A Simplified History:

3. Fragmentation: decrease in Jeans mass 
results in the halo dividing into smaller 
clumps

Gravity + 
Pressure +
Cooling



5

1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

3. Fragmentation: decrease in Jeans mass 
results in the halo dividing into smaller 
clumps

Chang et al. 2019: A Simplified History:

Gravity + 
Pressure +
Cooling



5

1. Adiabatic free-fall: dark halo free-falls 

2. Nearly virialized contraction: dark halo 
virializes due to increase in kinetic 
pressure; halo collapses at const. Jeans 
mass

3. Fragmentation: decrease in Jeans mass 
results in the halo dividing into smaller 
clumps

Stops for 2 reasons:
- Cooling becomes inefficient
- Pressure of halo becomes 

dominated by dark repulsive force 
-> Jeans mass is independent of 
temperature, doesn’t decrease!

Chang et al. 2019: A Simplified History:

Gravity + 
Pressure +
Cooling



Structure Formation from Dissipative Dark Sectors

- In Chang et al. 2019, a simple, asymmetric, subdominant dark sector 
composed of the dark electron + dark photon was studied

- They showed that Bremsstrahlung cooling would lead to interesting dark 
compact objects
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Inelastic Dark Matter

- Simple, asymmetric, subdominant model: dark proton & dark photon
- Mass splitting for dark proton results in an excited state and ground 

state
- New inelastic processes allow for new ways to (be) cool!
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Inelastic Dark Matter

- Simple, asymmetric, subdominant model: dark proton & dark photon
- Mass splitting for dark proton results in an excited state and ground 

state
- New inelastic processes allow for new ways to (be) cool!
- Our goal is to see how the landscape of these compact objects look 

like (see excellent Atomic Dark Matter (ADM) talks yesterday for 
detailed study of compact objects & dissipative DM)

- Only 4 particle physics parameters in our simplified model:
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Cooling Rates
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Figures & cross section. from 
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Figures & cross section. from 
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Cooling Rates
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Reference model:



The Lives of Dark Compact Objects

Fragments with same masses can have an entirely different history of formation!
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The Lives of Dark Compact Objects

Different formation histories can lead to different fragmentation masses!
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The Landscape of Compact Objects
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Figure from Chang et al. 2019



The Landscape of Compact Objects
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To Summarize…
- Dissipative dark sectors can influence the formation and evolution of astrophysical 

compact objects
- We considered a dark sector with multiple cooling channels
- Lives of compact objects are significantly different, leading to different landscape!

Next Steps…
- Explore new parameter space unlocked by model & possible observables 
- We only considered masses of the minimal fragments, can also consider 

simulations to get better picture (see Roy et al. 2023 for Atomic DM simulation)
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Thank you!
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Back-up slides
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Let’s Make Dark Stars!
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Figure from Chang et al. 2019



Extra Cooling Equations
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Linear Collapse

- Overdensities collapse!
- Perturbations grow if their 

wavelengths are > Jeans length
- Eventually reach “turnaround” 

point, transition into non-linear 
region
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Equations from Chang et al. 2019



Nonlinear collapse (Jeans analysis)

- DE initially collapses due to CDM and further collapses into centre of halo. 
Then CDM can be neglected since the DE halo collapses under its own 
gravity

- Baryons and DE are most likely correlated, assume that ignoring baryons do 
not make significant differences in solution
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Equations from Chang et al. 2019



Nonlinear collapse - temperature and density
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Equations from Chang et al. 2019



Nonlinear collapse - nearly virialized contraction

- As Jeans mass gets equal to mass of halo, we enter nearly virialized collapse
- In order for this, the collapse time must accommodate for m_J = M
- Pressure can be released via cooling if the main source of pressure is kinetic
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Equations from Chang et al. 2019


