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How to Make Compact Objects

- Perturbations grow under linear theory, then moves to non-linear collapse
- SM forms stars due to dissipative processes
- Loss of kinetic energy -> particles fall into gravitational potential
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Dark Compact Objects

What if we can have compact objects made up of purely dark matter?

- Dense clumps of dark matter can collapse if necessary conditions are met

- Results in a landscape of objects: dark stars and dark black holes (!)

- Dark BHs from dissipative dark sectors can have subsolar masses! Interesting GW
prospects... (see Shandera et al. 2018, Chang et al. 2019, Gurian et al. 2023)
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Chang et al. 2019: A Simplified History:

1. Adiabatic free-fall: dark halo free-falls

2. Nearly virialized contraction: dark halo

Gravity + virializes due to increase in kinetic
Pressure + pressure; halo collapses at const. Jeans
Cooling mass

3. Fragmentation: decrease in Jeans mass
results in the halo dividing into smaller
clumps

Stops for 2 reasons:
- Cooling becomes inefficient
- Pressure of halo becomes
dominated by dark repulsive force
-> Jeans mass is independent of
temperature, doesn’t decrease!
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Structure Formation from Dissipative Dark Sectors

- In Chang et al. 2019, a simple, asymmetric, subdominant dark sector
composed of the dark electron + dark photon was studied

- They showed that Bremsstrahlung cooling would lead to interesting dark
compact objects
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Inelastic Dark Matter

- Simple, asymmetric, subdominant model: dark proton & dark photon

- Mass splitting for dark proton results in an excited state and ground
state

- New inelastic processes allow for new ways to (be) cool!

- Our goal is to see how the landscape of these compact objects look
like (see excellent Atomic Dark Matter (ADM) talks yesterday for
detailed study of compact objects & dissipative DM)

- Only 4 particle physics parameters in our simplified model:
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Cooling Rates
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The Lives of Dark Compact Objects
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Fragments with same masses can have an entirely different history of formation!



The Lives of Dark Compact Objects
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Different formation histories can lead to different fragmentation masses!




=
<)

<)
2
S

The Landscape of Compact Objects
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The Landscape of Compact Objects
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To Summarize...

Dissipative dark sectors can influence the formation and evolution of astrophysical

compact objects
- We considered a dark sector with multiple cooling channels
Lives of compact objects are significantly different, leading to different landscape!

Next Steps...

Explore new parameter space unlocked by model & possible observables
We only considered masses of the minimal fragments, can also consider
simulations to get better picture (see Roy et al. 2023 for Atomic DM simulation)
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Thank you!
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Let's Make Dark Stars!
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Extra Cooling Equations
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Collapse w/ both channels
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Radiation domination Matter domination
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- Overdensities collapse! Radiation _ _

- Perturbations grow if their
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Nonlinear collapse (Jeans analysis)
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- DE initially collapses due to CDM and further collapses into centre of halo.
Then CDM can be neglected since the DE halo collapses under its own
gravity

- Baryons and DE are most likely correlated, assume that ignoring baryons do
not make significant differences in solution
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Nonlinear collapse - temperature and density

dekin . 3 dTeD . P dV A ::> d lOg Te . gmeD PeD _ tcollapse
dt 2meD dt M dt d log Pep 3 Pep TeD tcooling
-1
__ ([ dlogpe,, 3T, 1
tcollapse = dt ) tcooling = i K
dlog pe,\ ™!
tcollapse = ( 7 ) —
t
1 1/2
tg = (M) M >my Adiabatic free-fall
%tcoohng M =mj;and {eoing >te  Nearly virialized contraction

Equations from Chang et al. 2019

43



Nonlinear collapse - nearly virialized contraction

- As Jeans mass gets equal to mass of halo, we enter nearly virialized collapse
- In order for this, the collapse time must accommodate for m_J = M

Pressure can be released via cooling if the main source of pressure is kinetic

Equations from Chang et al. 2019
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