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DM	Capture	in	NS

For	a	mass	range	of	GeV	<	mχ <	PeV

a	single	scatter	is	enough	for	the	DM	
particle	to	lose	enough	energy	to	get	
completely	captured.
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DM	can	recoil	against	neutrons	in	the	NS losing	energy
For	capture,	the	dark	matter	must	lose	enough	of	its	energy	through	collisions	with	scattering	sites	in	the	star
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For	heavy	dark	matter,	mχ >	PeV	

Heavier	dark	matter		has	more	initial	
kinetic	energy	in	the	halo.
∴	it	needs	to	lose	more	energy	to	be	
captured,	i.e.,	it	needs	to	scatter	
more.
Multiscatter	capture	becomes	more	
important	in	this	case	.
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DM	is	captured	as	it	loses	energy	by	scattering
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DM	is	captured	as	it	loses	energy	by	scattering

First	stage	of	thermalization:
DM	continues	in	a	closed	orbit	
till	its	orbit	is	now	contained	
within	the	NS	

The	timescale	on	which	this	
happens	is	called	
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DM	is	captured	as	it	loses	energy	by	scattering

First	stage	of	thermalization:
DM	continues	in	a	closed	orbit	
till	its	orbit	is	now	contained	
within	the	NS	

The	timescale	on	which	this	
happens	is	called	

Second	stage	of	thermalization:	
DM	moves	completely	inside	the	
star	on	the	orbit	which	shrinks	
to	the	thermal	radius,
i.e., T𝑥=	TNS

The	timescale	on	which	this	
happens	is	called	
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Inelastic	DM

• We	investigate	the	possibility	of	Inelastic	DM	
thermalizing	outside NS	before	it	eventually	settles	in	the	
NS.

• Depending	on	the	DM	model,	it	might	be	possible	to	
detect	this	partial	DM	annihilation	outside	the	NS,	in	the	
form	of	neutrinos	or	gamma	ray	signatures.		
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Rinel
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Rinel
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Rinel

DM	predominantly	scatters	inelastically	off	nuclei	with	negligible	
loop	level	elastic	scattering
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Inelastic	Dark	Matter
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A’𝜇NS	can	accelerate	DM	to	~0.7c	during	infall.	This	provides	
sufficient	kinetic	energy	to	allow	up-scattering of	χ1 to	χ2

Inelas'c dark ma.er 
models feature a DM 
par'cle χ1 with mass mχ

and a slightly heavier state χ2
with mass mχ + δm, where 
δm ≪ mχ
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Inelastic	Dark	Matter
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DM	can	partly	thermalize	and	annihilate	
outside	NS,	and	can	produce	SM	particles

A’𝜇

The	𝜈 (or	𝛾) Nlux	can	be	detected	by	𝜈 (or	𝛾)	detectors

δ imposes	an	energy	threshold	below	
which	interactions	are	suppressed.		
(i.e.	Rinel depends on δ)	

For		mχ>	GeV à δ	 ∈		[50-300	MeV]
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Timescales	for	DM	thermalization
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Amount	of	DM	annihilating	outside	NS

Fraction of the total captured and thermalized DM outside the neutron star comes from the condition 

ECM ≳	mn +	mχ +	δmχ

Where	ECM		is	the	center-of-mass energy of a dark matter particle transiting a neutron star 
14



nNS &	𝜌DMModels
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• 𝜈 Elux	produced	by	a	single	NS	is	too	faint	to	be	detected.

• ~109 NS	predicted	in	the	Milky	Way	with	densest	population	in	
galactic	center

∴	Adopting	NS	distribution	models

May 9, 2023

• Surface	density	of	disk	:
arXiv:	0908.3182v1

• Number	density	distribution	:
arXiv:	2101.12213
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𝜈 flux	signal
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Then	𝜈 flux	for	a	distribution	of	NS	models	+	DM	
halo	density	profiles	–
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All	panels	show	NFW	DM	profile	for	the	most	optimistic	NS	distribution
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Thank	you	! Questions?
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Backup Slides
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Mass capture rate densities Mass capture rates 
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𝜂NS &	𝜌DM Models
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Then	𝜈 flux	for	a	distribution	of	NS	models	+	DM	
halo	density	profiles	–

DM	density	profiles	:

Note:	halo	velocities	have	been	adopted	from	MW	RC	[Sofue	Y.	2020]
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Telescope Sensitivities &
Detection Prospects
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Sensitivities of TRIDENT (10 TeV and 1 
PeV) and IceCube-Gen2 radio (1EeV).
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DM=1 PeV with the background 
fluxes , the capture rate used is 
the maximum.
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