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Introduction

: DM does not interact with SM via anything but gravity
Direct detection of DM would be extremely difficult... (not impossible)
Do we have a way to distinguish between DM models ?
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What are pulsars?

e Rapidly neutron stars that emit electromagnetic radiation

e \ery accurate clocks with well-understood , stable rotational
frequency across long periods of time (>20 years)

e Can be used to detect astrophysical phenomenon by studying S
(TOAS) '

e \We are mostly interested in pulsars i P

JaN

[Image: Michael Kramer]




Pulsar Timing Array

HUNTING GRAVITATIONAL WAVES USING PULSARS
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[Image: NASA/DOE/FERMI/ LAT Collaboration]



Dark Matter Signals

e Dark matter (DM) subhalos induce a gravitational to the pulsar
e The pulsar frequency is shifted due to effect

pulsar
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pulsar e 0

b V, Megyy

Primordial
black hole

[Kashiyama and Seto (2012) 1208.4101]



Comparison of different models

NFW profile
Dark matter subhalo signals for specific

have two distinctive characters

p(r) o« rt

° . statistical distribution of
halo as a function its mass (e.g. for ACDM, the mass
function is dn/dlogM~M-2)
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—— NFW profile

- can be estimated using the — scale radius

10! 102

formalism [Press and Schechter (1974) ApJ 1874, 425] Radius r [kpc]

o ; (NFW) [Lund (2020)]
[Navarro, Frenk and White (1996) astro-ph/9508025]



ACDM subhalos are to be detected by
PTAs

ACDM projection from Monte Carlo Simulations
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Enhanced Power Spectrum

e Some DM models exhibit at small scale (<pc)

e e.g. post-inflationary [Hogan and Ress (1988), Phys. Lett. B 205, 228]

e Other models: (EMD) [Erickcek and Sigurdson (2011), 1106.0536],
[Graham,Mardon and Rajendran (2015), 1504.02102]

e Disruption of DM subhalos due to and

° of subhalos for first two models: ~80% in number in the solar

neighborhood [shen, Xiao, Hopkins and Zurek (2023), 2207.11276] by N-body simulation +
analytic methods



Power spectrum from
[Vaquero, Redondo and Stadler (2019), 189.09241]

Axion Minicluster

Axion Miniclusters

Ii]

R
at infall

w/ tidal effects

TT

TETIETTIRIRTIRIITRITA [RTTa T
T

dn/dlog(M) [I)"

FRRTITT R RTTIT M RRTI

df /dlog(M)
(T\'lgnilirullw-

P [ ) L LU [ L B B LR L |

T AT ATTT RTTT R

e AR N

1

.z

-
(&

el
1500 2000

L PSS N ST PR PR PR Y L L I n
'10-12 10-8 1 10* 10% 1 500 1000
M [Mg)] Np

[VL, Mitridate, Trickle and Zurek (2020) 2012.09857]



Power spectrum from
[Erickcek and Sigurdson (2011), 1106.0536]

Early Matter Domination

Early Matter Domination
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Monte Carlo (MC) Simulation Code

e Randomly distribute DM halos and compute the
e Publicly available at: https://github.com/szehiml/dm-pta-mc

from all halos

11



(more) Realistic PTA data

Previous plots are projected SNR computed using our MC code
The PTA community has their pipeline in searching for gravitational-wave
signal with

We developed a [VL, Taylor, Trickle and Zurek (2021) 2104.0577] tO
combine our MC code with 's analysis pipeline, and computed
SNR projections on point-mass DM subhalos using (current data is

not yet sensitive enough to subhalos)
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Projected Constraints with

— DBayesian

Frequentist

107210771077 107" 107° 10=" 107" 107 10~ 10~ 107% 107" 1 10
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[VL, Taylor, Trickle and Zurek (2021) 2104.0577]

Injection of

leads to a deterioration
of constraints by ~1
order of magnitude with
the current method.
Smarter analysis
method in mitigating the
red noise is needed
(work in progress).
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1.

What can we learn about dark matter using
PTA data?

2. Long-range DM-baryon

C logical Phase Transition
osmological Phase A interaction (fifth force)
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Cosmological Phase Transition

0.001

A phase transition in the
early universe will produce a

NANOGrav’s sensitivity
corresponds to a phase transition
temperature
(~100 GeV)
However, a large class of
models feature first-order

phase transitions (e.g. SIMP [Hochberg
et al. (2014) 1402.5143, Schwaller (2015) [Schwaller (2015) 1504.07263]

1504.07263], SU(9) asymmetric dark
matter [Murgui and Zurek (2021) 2112.08374])
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Current Constraint

Envelope Semi-analytic Numerical
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[NANOGrav (2022) 2104.13930]

e Constraints derived using the [NANOGrav (2020) 2005.06490, 2009.04496], Which
found strong evidence (Bayes factor > 10000) for across pulsars, but no
evidence for Hellings-Downs correlation

e Instead of specific models, we the gravitational wave spectrum with a few phase

transition parameters [Jinno and Takimoto (2016) 1605.01403; Lewicki and Vaskonen (2021) 2012.07826; Cutting et al. (2021) 2005.13537] 4¢



2. Long-range DM-Baryon Interaction

e Attractive between DM subhalos and baryons can be much stronger
than gravity

e e.g. asymmetric dark matter (ADM) nuggets [Gresham, Lou and Zurek (2018) 1805.04512]

GMmyx _, y

() force Vyuk (7 ) =~ r €

LD gxoXX + gnonin

e (Can arise from a very general effective Lagrangian:

e PTAs are sensitive to A>~ 10~ pc (mediator mass m,<~102" eV)

¢
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Current Constraints

90-th percentile constraints
derived using the

[INANOGrav (2018),
1801.01837, 1801.02617]

Expect the constraint to further
improve with new data

[Gresham, VL

, and Zurek (2023) 2209.03963]
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Other Existing Constraints

Bullet cluster [Spergel and Steinhardt
(2000) astro-ph/9909386] +
MICROSCOPE [Bergé et al (2018)
1712.00483] IS @

based on DM-DM and
baryon-baryon constraints
If only a (e.g.
~0(1%)) of DM is charged under
fifth force, then the bullet cluster
constraint , but the
other constraints only deteriorate
linearly with the subcomponent
fraction

assisted NS heating

— A =10""pc
=e=s X =1 Pe

[Gresham, VL, and Zurek (2023) 2209.03963]
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Conclusions

e Pulsar Timing Arrays are powerful tools in studying DM, both in the present
and in the future

Future directions:

e Mitigate the effects of

e Search for [Ramani, Trickle and Zurek (2020) 2005.03030] With real
PTA data

20
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Pulsar Timing Arrays (PTAS)

e Accurate timing measurements on multiple pulsars
e Current experiments




Square Kilometer Array (SKA)

e Radio telescope based in Africa and
Australia

e Projected to be able to observe
~200 pulsars

e Benchmark for experimental
parameters

[Image: SKA Observatory]



Result: SKA Reach

e Assumes

mass
e SKA parameters (with white
noise):
200 pulsars

20 years of observation
5 kpc of pulsar distance
2 weeks of cadence

50 ns of rms time measurements

Pulsar

16~ 15 10 1pF I ™ 10~ 107
M [Mo)

[VL, Mitridate, Trickle and Zurek (2020) 2012.09857]



Enhanced Power

Power spectrum at recombination

Axion MC mis. Early MD
Axion MC str. :=  Vector DM
ACDM . ACDM
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[VL, Mitridate, Trickle and Zurek (2020) 2012.09857]




Power spectrum from

VeCtor Dark Matter [Graham,Mardon and Rajendran (2015),

1504.02102]

Vector Dark Matter

L
w/ tidal eff. 3

I

—
]
&

=
—
—
bl
-
St
o0
~
S
Sl
=
-~
S
—
—~
-
R
a0
~~
<
st
.
_—
<

Osignificance

L
—_— 107 GeV
— m= 10718 GeV !
— m= 10"17GeV }

—18.0 H

—18.5 ¢ .

Yoy L P P i it 13 2 gy L s L
Wi 1t 1 1 e 1l 500 1000
M [Mg) Np

SO LS P |
1500 2000

[VL, Mitridate, Trickle and Zurek (2020) 2012.09857]



Parameterization of DM Signals

should be treated as random variables
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[VL, Taylor, Trickle and Zurek (2021) 2104.0577]



Probability Distribution function of DM amplitude
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Data Analysis with realistic PTA data

We use NANOGrav’s flagship Bayesian data analysis code “enterprise”

e Given a timing signal with some parameter and some priors, the code returns
its posterior distribution while marginalizing other nuisance parameters

[ Single pulsar

Max pulsar

White noise
only, SKA
parameters,

i, 200 pulsars
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[VL, Taylor, Trickle and Zurek (2021) 2104.0577]
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Upper limits on f

Upper limit on dark matter fraction f can be computed by combining the MC result
and the enterprise result
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Phase transition spectrum

—— Envelope
1077 Semi-analytic
Numerical
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