STELLAR BINARY HARDENING FROM SUB-SOLAR MASS PRIMORDIAL BLACK HOLES

Badal Bhalla
w/ Benjamin Lehmann, Kuver Sinha and Tao Xu
University of Oklahoma

INTRODUCTION

- Dark Matter (DM) could be comprised of Primordial Black Holes (PBH).
- These Primordial Black Holes (PBHs) can exist in a wide mass window.
- Different methods are required to cover different PBH mass window.
- We are interested in sub-solar mass PBH and propose a new dynamical test to probe it.

STELLAR BINARIES

Binaries have an energy reservoir (their internal energy) that can be exchanged with stellar objects.

$$
E_{\text {int }}=-\frac{G m_{1} m_{2}}{2 a}=-E_{b}
$$

M. Mapelli: Lecture notes

CLASSIFICATION OF BINARIES

Binaries can be broadly classified into two categories

HARD BINARY

SOFT BINARY

$\frac{G M_{1} M_{2}}{2 a}>\frac{1}{2} m \sigma^{2}$

$\frac{G M_{1} M_{2}}{2 a}<\frac{1}{2} m \sigma^{2}$

HEGGIE'S LAW

Hard Binaries tend to become harder (shrink) and soft binaries tend to become softer (expand) as an effect of three body encounters.

HARDENING RATE

RATE OF BINDING ENERGY EXCHANGE

$$
\frac{d E_{b}}{d t}=\pi \xi G^{2} \frac{\rho}{\sigma} m_{1} m_{2}
$$

HARDENING RATE

$$
\frac{d a}{d t}=-2 \pi \xi G \frac{\rho}{\sigma} a^{2}
$$

Independent of Perturber's mass!

HARDENING FROM SUBSOLAR MASS PBHS

A binary acts as a hard binary if its binding energy is greater than the kinetic energy of the PBH .

$$
\frac{G M_{1} M_{2}}{2 a}>\frac{1}{2} m \sigma^{2}
$$

HALO BINARIES

Halo Binaries spend a fraction of their lifetime in the disk and cross it at a very high speed.

$$
a_{f}=\frac{1}{a_{i}^{-1}+2 \pi G \xi\left\langle\rho_{\chi}\right\rangle \frac{f_{\mathrm{PBH}}}{\sigma_{\mathrm{PBH}}} T-16 \sqrt{\frac{\pi}{3}} \frac{G \rho_{d}}{\sigma_{d}} x T \ln \Lambda}
$$

DOMINANT PERTURBER:

PBH

SUB-DOMINANT PERTURBER:

Astrophysical Objects

TIME-AVERAGED DARK MATTER DENSITY

Depending on the orbit, each binary experiences a time-varying DM density.

$$
\bar{\rho}_{\chi}=\frac{\int_{0}^{2 \pi} r^{2}(\theta) \rho_{\chi}(r) d \theta}{\int_{0}^{2 \pi} r^{2}(\theta) d \theta} .
$$

NFW

$$
\rho_{\chi}(r)=\frac{\rho_{s}}{\frac{r}{r_{s}}\left(1+\frac{r}{r_{s}}\right)^{2}}
$$

SEARCH FOR A SUB-SOLAR MASS PBH: FINAL DISTRIBUTION OF HALO BINARIES

CONCLUSION

- Sub-solar mass PBHs would lead to the hardening of wide stellar binaries.
- A difference in the observed distribution of Halo wide binaries with same value of x but different DM density could be a sign of PBH presence.
- More analysis on the observed distribution of ultra-wide stellar binaries is required.

https://doi.org/10.1093/mnras/stab323

THANK YOU

BACKUP SLIDES

N-BODY SIMULATIONS

$$
\langle\Delta E\rangle=\xi \frac{m_{\mathrm{PBH}}}{2 m_{\star}} \frac{G m_{\star}^{2}}{2 a}=\xi \frac{m_{\mathrm{PBH}}}{2 m_{\star}}\left|E_{b}\right|
$$

$$
\langle\Delta E\rangle=-\frac{4}{3} \sqrt{\frac{1}{3 \pi}} \frac{G m_{*}^{2}}{a} \ln \Lambda
$$

SOFTENING

RATE OF BINDING ENERGY EXCHANGE

$$
\frac{d E_{b}}{d t}=-8 \sqrt{\frac{\pi}{3}} \frac{G^{2} m_{1} m_{2} \rho}{\sigma} \ln \Lambda
$$

J. Binney and S. Tremaine, Galactic Dynamics
SOFTENING RATE

$$
\frac{d a}{d t}=16 \sqrt{\frac{\pi}{3}} \frac{G \rho}{\sigma} a^{2} \ln \Lambda
$$

