STELLAR BINARY HARDENING FROM SUB-SOLAR MASS PRIMORDIAL BLACK HOLES

w/ Benjamin Lehmann, Kuver Sinha and Tao Xu University of Oklahoma

INTRODUCTION

- Dark Matter (DM) could be comprised of Primordial Black Holes (PBH).
- These Primordial Black Holes (PBHs) can exist in a wide mass window.
- Different methods are required to cover different PBH mass window.
- We are interested in sub-solar mass PBH and propose a new dynamical test to probe it.

STELLAR BINARIES

M. Mapelli: Lecture notes

Binaries have an energy reservoir (their internal energy) that can be exchanged with stellar objects.

$$E_{int} = -\frac{G \, m_1 \, m_2}{2 \, a} = -E_b$$

CLASSIFICATION OF BINARIES

Binaries can be broadly classified into two categories

HARD BINARY

SOFT BINARY

$$\frac{GM_1M_2}{2a} > \frac{1}{2} m\sigma^2$$

$$\frac{GM_1M_2}{2a} < \frac{1}{2} m\sigma^2$$

HEGGIE'S LAW

Hard Binaries tend to become harder (shrink) and soft binaries tend to become softer (expand) as an effect of three body encounters.

10.1093/mnras/173.3.729

HARDENING RATE

RATE OF BINDING ENERGY EXCHANGE

$$\frac{dE_b}{dt} = \pi \xi G^2 \frac{\rho}{\sigma} m_1 m_2$$

HARDENING RATE

$$\frac{da}{dt} = -2 \pi \xi G \frac{\rho}{\sigma} a^2$$

Independent of Perturber's mass!

HARDENING FROM SUB-SOLAR MASS PBHS

A binary acts as a hard binary if its binding energy is greater than the kinetic energy of the PBH.

$$\frac{GM_1M_2}{2a} > \frac{1}{2} m\sigma^2$$

HALO BINARIES

Halo Binaries spend a fraction of their lifetime in the disk and cross it at a very high speed.

$$a_f = \frac{1}{a_i^{-1} + 2\pi\,G\,\xi\,\langle\rho_\chi\rangle\,\frac{f_{\rm PBH}}{\sigma_{\rm PBH}}\,T -\,16\sqrt{\frac{\pi}{3}}\frac{G\rho_d}{\sigma_d}\,xT\ln\Lambda}$$

DOMINANT PERTURBER:

PBH

SUB-DOMINANT PERTURBER:

Astrophysical Objects

TIME-AVERAGED DARK MATTER DENSITY

Depending on the orbit, each binary experiences a time-varying DM density.

$$\bar{\rho}_{\chi} = \frac{\int_0^{2\pi} r^2(\theta) \rho_{\chi}(r) d\theta}{\int_0^{2\pi} r^2(\theta) d\theta}.$$

NFW $\rho_{\chi}(r) = \frac{\rho_s}{\frac{r}{r_s}(1 + \frac{r}{r_s})^2}$

SEARCH FOR A SUB-SOLAR MASS PBH: FINAL DISTRIBUTION OF HALO BINARIES

CONCLUSION

- Sub-solar mass PBHs would lead to the hardening of wide stellar binaries.
- A difference in the observed distribution of Halo wide binaries with same value of x but different DM density could be a sign of PBH presence.
- More analysis on the observed distribution of ultra-wide stellar binaries is required.

https://doi.org/10.1093/mnras/stab323

THANK YOU

BACKUP SLIDES

N-BODY SIMULATIONS

$$\langle \Delta E \rangle = \xi \frac{m_{\rm PBH}}{2m_{\star}} \frac{Gm_{\star}^2}{2a} = \xi \frac{m_{\rm PBH}}{2m_{\star}} |E_b|$$

$$\langle \Delta E \rangle = -\frac{4}{3} \sqrt{\frac{1}{3\pi}} \frac{G m_*^2}{a} \ln \Lambda$$

SOFTENING

RATE OF BINDING ENERGY EXCHANGE

$$\frac{dE_b}{dt} = -8\sqrt{\frac{\pi}{3}} \frac{G^2 m_1 m_2 \rho}{\sigma} \ln \Lambda$$

J. Binney and S. Tremaine, Galactic Dynamics

SOFTENING RATE

$$\frac{da}{dt} = 16\sqrt{\frac{\pi}{3}} \frac{G\rho}{\sigma} a^2 \ln\Lambda$$

