Search for Prompt Production of a GeV scale Dimuon Resonance Using Data Scouting at CMS

Zhangqier Wang on behalf of the CMS Collaboration

Phenomenology 2023 May 8th 2023

Dimuon Resonances

- Historically, several new particles were discovered through the resonant particle pair production
- Search for a narrow dimuon resonance at low mass using Run II scouting data recorded by the CMS

Why GeV Scale?

- New states at the GeV scale are motivated from several perspectives.
 - Vector portal interaction in thermal dark matter models

 New scalar or vector coupling to muons could help explain muon (g-2) anomaly

Analysis Strategy

- Searching for a light (1-8 GeV) BSM mediator decaying into a pair of opposite sign muons using Run II scouting data collected by CMS
- Event selection optimized for signal (prompt dimuon resonance)
- Bump hunt on the dimuon mass using analytical signal and bkg. Pdfs
- Measure integrated luminosity, set model independent limit on $\sigma \times B \times \alpha$
- Compute $\sigma \times B \times \alpha$ in specific models to set limits on model parameters

What is "Data Scouting"?

- Di-muon data scouting
 - reconstructed at the high-level trigger (HLT) stage.

Reduced events size by storing only essential information and increasing efficiency for dimuons.

200 220 m_{μμ} (GeV)

200

160

180

Event Selection

Target prompt production, require transverse displacement L<0.2cm

• $p_T^{\mu} > 4 GeV$, $|\eta^{\mu}| < 1.9$

- Two signal categories targeting inclusive and boosted production
 - Optimized for different production mechanisms (DY or ggF)
- Two data-driven muon MVA IDs
 - OS J/ψ and Y events as signal
 - SS events as background

Preselection	$L < 0.2 \text{ cm}, \eta^{\mu} < 1.9, \text{ Opposite sign}$				
Signal	Inclusive		Boosted		
Selection	$m_{\mu\mu} < 4 \text{ GeV}$	$m_{\mu\mu} > 4 \text{ GeV}$	$m_{\mu\mu} < 4 \text{ GeV}$	$m_{\mu\mu} > 4 \text{ GeV}$	
p_T^μ	> 4 GeV		> 5 GeV		
muon ID	$J/\psi ID$	Υ ID	$J/\psi \text{ ID}$	$J/\psi \text{ ID}$	
Vertex	$L/\sigma_L < 3.5$	L < 0.015 cm	$L/\sigma_L < 3.5$	$L/\sigma_L < 3.5$	
$p_T^{\mu\mu}$	-	-	$> 35 \mathrm{GeV}$	$> 20 \mathrm{GeV}$	

Signal and Background Modeling

- Pick mass window spanning 5 times the mass resolution around signal
- Signal modeled from fits to SM resonances
 - Double Crystal Ball + Gaussian
 - 20% uncertainty on resolution
- Combinatorial background is modeled using 4th order Bernstein polynomial and other 3 empirical functions (discrete profiling method).
 - checked with toy datasets to have negligible bias

arXiv:1408.6865

Peaking Backgrounds

- Peaking backgrounds ($D^0 \to KK, K\pi$) estimated from control regions with inverted L/σ_L selection (transfer factors estimated from simulation)
 - Uncertainty on transfer factors 20-25% estimated using J/Ψ data/MC

Largest Excess

- The largest excess is at 2.41 GeV in the boosted category
 - 3.2σ local significance, 1.3σ global significance
 - Coincides with the 3.1σ local excess at 2.42 GeV in one event category (X+b, 10<pT(X)<20 GeV) from LHCb measurement. JHEP 10 (2020) 156

Model Independent Limit

- Main results are model independent limits on $\sigma \times B \times \alpha$ for the inclusive and boosted selections
- Limit calculation includes all experimental uncertainties

Model Dependent Limit

- We choose two specific models to constrain model parameters
 - DY production of vector boson (dark photon)
 - Gluon fusion production of pseudoscalar (2HDM+S)

Relies on theoretical calculations of cross sections, branching ratio, and

experimental acceptance

$$\sigma_{\mathrm{pp}\to\mathrm{Z}_{\mathrm{D}}}\cdot\epsilon^{2}\cdot\mathcal{B}\cdot A=\sigma_{\mathrm{limit}}$$

- Dark photon cross section and BR calculated with MadGraph
- NNLO corrections and acceptance from DYTurbo EPJC 80 (2020) 251

$$\sigma_{pp \to a} \cdot \sin^2(\theta_{\rm H}) \cdot \mathcal{B} \cdot A = \sigma_{
m limit}$$

- Gluon fusion cross section from HIGLU, BR from JHEP 03 (2018) 178
- Acceptance from MadGraph and Pythia

Dark Photon Interpretation

• Limits on kinetic mixing parameter ε^2 in dark photon model extracted from the inclusive category limits

$$\sigma_{\mathrm{pp}\to\mathrm{Z}_{\mathrm{D}}}\cdot\epsilon^{2}\cdot\mathcal{B}\cdot A=\sigma_{\mathrm{limit}}$$

2HDM+S Interpretation

• Limits on mixing angle $sin(\Theta_H)$ in Type-IV 2HDM+S model (tan β =0.5) extracted from the boosted category limits

$$\sigma_{\mathsf{pp} \to a} \cdot \sin^2(\theta_{\mathrm{H}}) \cdot \mathcal{B} \cdot A = \sigma_{\mathrm{limit}}$$

$$\mathcal{L} \supset -\sum_{f} \frac{y_f}{\sqrt{2}} i \xi_f^{\mathbf{M}} \bar{f} \gamma_5 f a$$

type	I	П	III	IV
up-type quarks	s_{θ}/t_{β}	s_{θ}/t_{β}	s_{θ}/t_{β}	s_{θ}/t_{β}
down-type quarks	$-s_{\theta}/t_{\beta}$	$s_{\theta}t_{\beta}$	$-s_{\theta}/t_{\beta}$	$s_{\theta}t_{\beta}$
charged leptons	$-s_{\theta}/t_{\beta}$	$s_{\theta}t_{\beta}$	$s_{\theta}t_{\beta}$	$-s_{\theta}/t_{\beta}$

Summary

- Data scouting allows CMS to perform powerful search for dimuon production at GeV scale
 - Impressive sensitivity to dark photon and scalar resonances
- With more statistics from Run 3 data, the result will be further improved.
 - Excesses will be monitored to see if they emerge as new physics
- LHC Run 3 will be FUN!

Back up

Scouting Dimuon Mass Distribution

Dimuon Scouting Trigger Efficiency

Signal Resolution

 Signal is modelled by a double Crystal Ball function + gaussian with fixed parameters, extracted from fits to SM meson resonances

 Upper plot shows that mass resolution is nearly constant between measured peaks

We use a flat value of 1.3%

0.05

0.025

0.02

0.01

0.005

Relative resonance width vs mass

Systematic Uncertainty

Effect	$m_{\mu\mu} < 2.6\text{GeV}$	$m_{\mu\mu} > 4.2 \mathrm{GeV}$		
Integrated luminosity	2.3–2.5%			
Mass resolution	20%			
Trigger efficiency	1–20%			
Muon ID efficiency	4–9%	12-20%		
Vertex selection	_	3%		
Efficiency application	8%	4%		
D ⁰ meson normalization	20–25%	_		

LHCb Dark Photon Search

- The mechanism is the same for γ* and dark photon production
- Estimate non-prompt γ* bkg. using SS sample, subtract from observation
- Ratio between the observed γ^* yield and signal yield proportional to ε^2

Limits with Theory Uncertainties

• Model dependant parameter results, with previously shown $\pm 1\sigma$ theory uncertainties added to observed limit

