

MARYLAND CENTER FOR 56 FUNDAMENTAL 9 PHYSICS

A New Production Mechanism for Dark Photons Pheno 2023

Edward Broadberry - University of Maryland, College Park

In collaboration with Anson Hook, Gustavo Marques-Tavares, & Saurav Das

Motivation & Model

- Dark photons hard to produce non relativistically due to spin
- We are interested in the following interaction:

We begin with a misaligned ALP, and dynamically convert to a dark photon.

Massless U(1)

Misalignment Mechanism Basics

A scalar field in an FRW background satisfies

Mixing in a B-field

 $B(t)\hat{z}$, leading to the classical equations of motion

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = \frac{b(t)}{a(t)}\dot{A},$$
$$\ddot{A} + H\dot{A} + m_A^2A = -a(t)b(t)\dot{\phi}.$$

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = \frac{b(t)}{a(t)}\dot{A},$$
$$\ddot{A} + H\dot{A} + m_A^2A = -a(t)b(t)\dot{\phi}.$$

• We define the `mixing' $b(t) \equiv B(t)/f$ as they always appear in this ratio.

We assume the massless U(1) develops a large homogeneous magnetic field

Eigenvector Decomposition

• Can write in terms of instantaneous eigenmodes in a non-expanding universe

 $\omega_s^2 \approx \frac{m_\phi^2 m_A^2}{b^2 + m_\phi^2}$ $\omega_f^2 \approx b^2 + m_\phi^2$

• The BCs excite mostly the slow mode

 $\dot{\phi}(t_0) = A(t_0) = \dot{A}(t_0) = 0.$

Quick-Glance Guide

Characteristic times

[1] Anson Hook, Gustavo Marques-Tavares, and Yuhsin Tsai. "Scalars Gliding through an Expand- ing Universe". In: Phys. Rev. Lett. 124.21 (2020), p. 211801.

8

 10^{2}

Conversion & Energy Density

With an analytic solution we can predict both the fraction of energy that converts to dark photons, and the total energy density.

$$\rho_{\text{tot}} \rightarrow \frac{1}{2a(t)^2} m_A^2 \mathscr{A}^2(t)$$

Conclusion

 A misaligned scalar can be fully converted to dark photons in the presence of a large homogeneous magnetic field.

- The dark photons are produced non-relativistically.

$$\frac{\phi}{f}F\tilde{F}_D.$$

 We can analytically solve for the field profiles, observing the gliding behaviour $b \gg m_{\phi}, \rho_A \sim a^{-1}$

Several effects buy you more energy than in the misalignment mechanism

Backup Slides

Landau Zener I

• The system is analogous to Landau-Zener (LZ), where the conversion probability is the late time value

We guess the scaling of the conversion probability

$$\frac{\rho_{\phi}}{\rho_{\text{tot}}} \sim \exp\left(-c\frac{b^2(t_M)}{\dot{b}(t_M)}\right) = \exp\left(-c\frac{m_{\phi}}{H(t_M)}\right)$$

$$f) = \frac{\rho_{\phi}}{\rho_{\text{tot}}}$$

Landau Zener II

Initial Fast mode amplitude

mode decays away quickly. We test with fast mode exciting BCs

The massless equations of motion give the expectation that any initial fast

Inhomogeneities I

$$b(x,t) = b(t)\cos(kx) \notin$$

A single k mode can be modelled with a time dependent dark photon mass

Inhomogeneities II

