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Introduction

Dark Sector Standard Model

Direct detection  Nightmare Scenario? →

GRAVITY

Gravitational 
Waves CMB
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Secluded Dark Sector: Axion + Dark Photon

Λ4 cos ( ϕ
f ) → m =

Λ2

2f

Dark photon

Initial condition: 

Ωϕ ≠ 0

ΩX ≈ 0

Axion E.O.M  →

Hubble friction m2ϕ

Caution: DMϕ ≠

 at Matter Dominationm > H(z) m ≲ 10−28 eV

Geller et al, 2104.08284
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Tachyonic instability: Exponential production of  Dark Photon 

Dark Photon E.O.M   
(  mode)

→
k

Time dependent frequency →

0 < k <
α |ϕ′￼|

f
ω2

± < 0 v± ∼ e|ω±|τ

Exponential growth

Tachyonic Band

Machado et al, 1811.01950

Geller et al, 2104.08284

v±(k, τ) |in =
eikτ

2k
Bunch Davis Vacuum
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Tachyonic instability: Enhancement of  one helicity 

In our numerical calculation we only consider +ve helicity for simplicity

v+ ∼ eω+τ
v+ ∼ eω+τ v− ∼ eω−τ v− ∼ eω−τ

1 2 3 4

1 2 3 4

|v+ |≫ |v− |
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Tachyonic instability: Energy transfer from Axion to DR 

ρi

ρtot
≡ Dark Energy

Matter

Radiation
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Effects on CMB

Perturbation in the  
secluded sector

Scalar metric fluctuation

Tensor metric fluctuation

G
ra

vi
ty

CMB TT

CMB EE

CMB TT

CMB EE

CMB BB
(Gravitational waves)

(Large scale GW)
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Metric fluctuation : Isocurvature modes 
The perturbation in Dark Photon is very high due exponential particle production

⟨δρ2
DR⟩1/2 ∼ 0.1ρDR ∼ (10−2,10−4)ρAxion ∼ 10−5ρDM ∼ δρDM |inflation

⟨δρ2
DR⟩1/2

ρDR
∼ 0.1

Matter domination:  ρDR ∼ (1 , 10−3) ρAxion

Subdominant DR in Matter domination can source high metric fluctuation

Assuming ρAxion ∼ 10−2ρDM

These fluctuations are uncorrelated from inflationary fluctuations  Isocurvature fluctuation→
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CMB Constraints
TT/EE signal  <  error-bar on Planck 2018 dataset1σ

B mode signal for  <  BB Signal  <  BICEP+KECK boundr = 10−3Sensitivity of future  
B mode experiments

The spectrum calculation is highly  
computation intensive
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Parameter space: Constraints from TT : α = 200

DR production happens late 
& 

Large  ( )ΩAxion ΩDR
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Parameter Space: Sensitivity of  BB : α = 200

Too Large BB

Too small BB
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Parameter space: Dependence on Λ

Small BB Large TT

La
rg

e 
TT

Sm
al

l B
B
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Parameter Space: TT+BB+EE
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Non-zero EB correlation from Axion oscillation

Breaks CP as  takes a background valueϕ

One helicity is enhanced compared to other  CP Violation≡

CP Violation  Difference in helicities∝
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Non-zero EB correlation from Axion oscillation

The signal does not have large support at small scale (unable to explain the CP violation) 

Predicts large CP violation at large scale
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Back-reaction of  DR to Axion
Back-reaction  Inverse decay of DR to Axion, DR axion scattering→

Back-reaction is studied (for convenience) on position space with spacetime discretized into lattices

Ratzinger et al., 2012.11584

Ef
fe

ct
s Only allows depleting Axion abundance by factor of 10−2

Wash out CP violation (helicity difference) for small k

*This is for axion oscillation in radiation domination
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Back-reaction of  DR to Axion
Backreaction  Inverse decay of DR to Axion, DR axion scattering→

Only relevant for high interaction  high → α

Slight suppression of B mode signal at small ℓ
Only affects the high   

spectra where signal is weak
ℓ
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Conclusion

• Completely secluded dark sectors can be probed via gravitational effects: 
Tachyonic instability generates exponential growth for dark photon


• CMB T & E measurements put constraints on the parameter space

• Axion - Dark photon system generates sizable B mode signal for future  

B mode experiments

• The signal is not strongly affected by back-reaction

• Produces CP violating EB signal at large scale

Stay tuned for the complete analysis (arXiv: 2306.xxxxx)
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THANK YOU

Future Directions

• Integrate Axion-DR system as a module in CLASS 

Full parameter scan with CDM parameter variation, fast spectrum calculation


• Investigate EB signal keeping future CMB experiments in mind

• Include back reaction of DR to axion in the analysis

Λ
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Post Credit Conclusion
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Mechanism of  Particle production

Relaxion

Particle production via Axion/ALP rolling

QCD Axion DM

Gravitational WavesInflation

Allows large values of : 1708.05008fa
Relaxion friction from  

particle production, 1607.01786

Friction for inflation rolling,  0908.4089 GWs from Dark photon,  1811.01950

……
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Example model for producing large α

Kim-Nilles-Peloso (KNP) Mechanism

Kim et al, hep-ph/0409138

Agrawal et al, 1708.05008

Mass eigenstates :

Coupling with 
light eigenstate 

Large   hierarchical couplingn →
UV models

Clockwork, extra dimension etc.
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Why CMB?
Axion-DR Particle production

Effects of Axion-DR energy exchange + Effects of spatial (  -dependent) fluctuation k

Depletion of Axion energy (e.g., Axion DM) 
 

Creation of DR (e.g.,  Reheating) 
 

Friction/slow rolling of Axion (e.g, inflation, relaxion) 
 
. 
.

Gravitational waves  
 

Gravity induced fluctuation/perturbation 
of SM plasma  effects in CMB


. 

.

≡
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Excitation of  small scale modes
Energy fraction in  modes 

today
k

  mode when axion starts to oscillatek ( ≡ kosc)

 are excitedk ≫ kosc Tachyonic band  
peak

0 < k <
α |ϕ′￼|

f

ω2 > (am)2
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Scalar metric fluctuations 

Similar  expressionsCEE
ℓ

 from ISW Effect (Change of late time potential)CTT
ℓ

Axion  and DR  Boltzmann equation: Calculate (m) (e) ϕ

Scalar contribution to TT and EE spectra is subdominant
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Tensor metric fluctuations 

DR Mode functions source

Most contributions at given  fromℓ (ℓ > 2)

l ≈ (τ0 − τ)k ⇒ τ = τ0 −
ℓ
k

Contribution from wider  modesk

Most contributions at given  fromℓ
τ ≈ τrei

Contribution from mode functions at reionization

 peaks at 
j2(x)
x2

x = 0

 peaks at 
jℓ(x)
x2

x ∼ ℓ



27

Energy transfer : Dependence on f

Fixed  : Smaller    Higher   lower  (& higher interaction strength)  lower Λ f → m → Ωaxion → ΩDR

m2ϕ m =
Λ2

2f
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CMB Spectrum: Dependence on f

Planck  error bar1σ

BICEP+KECK

Primordial BB: r = 10−3

Primordial + lensing 

 BB: r = 10−3

Fixed  : Smaller    Higher   lower  (& higher interaction strength)  lower Λ f → m → Ωaxion → ΩDR
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Energy transfer : Dependence on Λ

Fixed  : Higher  Higher   same  (& same interaction strength)  lower  (at late times)f Λ→ m → Ωaxion → ΩDR

m2ϕ m =
Λ2

2f

m = H(a) ∼ a−3/2
trans (Matter domination)

Ωi ∼
Λ4

ρtot a−3
trans

∼
Λ4

m2
∼ f 2
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CMB Spectrum: Dependence on Λ

Fixed  : Higher  Higher   same  (& same interaction strength)  lower  (at late times)f Λ→ m → Ωaxion → ΩDR
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Energy transfer : Dependence on  with fixed mΛ

Fixed  : Higher   Higher  (& higher interaction strength - due to lower  )m Λ → Ωaxion f

m2ϕ m =
Λ2

2f

ΩAxion ∼ m2f 2 ∼ Λ4
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CMB Spectrum: Dependence on  with fixed Λ m
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Energy transfer : Dependence on α

Lower   lower interaction strength  delayed energy transferα → →

m2ϕ m =
Λ2

2f
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CMB Spectrum: Dependence on α

Lower   lower interaction strength  delayed energy transferα → →
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DR production happens late 
& 

Large ΩAxion

Parameter space: Constraints from TT : α = 250
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Parameter Space: Sensitivity of  BB : α = 200
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Parameter space: Dependence on f

Small BB Large TT
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Parameter Space: TT+BB+EE
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Numerical Challenges
We solve the mode functions numerically for total  modesN = 200

Mode functions are highly oscillatory and we solved them from  to today τosc τ0

We calculated the CMB spectrum from scratch numerically

 steps of computations (with highly oscillatory functions) ∼ Nℓ × N3

O
pt

im
iz

at
io

n

Physics: change of unit, redefinition of variable ( to make equations less stiff)

Numerical: Numerical integration using SciPy, paralization using OPENMP and MPI

Typical computation time:  BB/EE  mins, TT  mins∼ 6 ∼ 30

Optimization was necessary for parameter scans
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Parameter Space: EE : α = 200
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Parameter Space: BB : α = 200

DR production happens after  reionization

Too small BB
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Parameter Space: BB : α = 250

Too Large BB

Too small BB
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Parameter Space: BB : α = 250

DR production happens after  reionization

Too small BB
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Parameter Space: TT+BB+EE

Too large TT 
 +  

Too large BB
Too small BB

Too small BB
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Parameter Space: TT+BB+EE
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CMB EB measurement: Cosmic Birefringence
⚠   Different Model

Axion DM SM Photon

Rotates the plane of linear polarization of CMB photon

Birefringence angle Intrinsic EB at LSS

Observed EB
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CMB EB measurement: Miscalibration Angle

Miscalibration angle (systematics) : α

The unknown angle of orientation of polarization detectors

Arises because the orientation of detectors in sky coordinate is not precisely known  
& 

due to rotation of light by optical component

  is degenerate with α β

Rotation at instrument level Rotation due to birefringence

CMB is only sensitive to (α + β)
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CMB EB measurement: Breaking degeneracy
CMB is only sensitive to (α + β)

Foreground (emission due to galaxy) is only sensitive to  ( it’s a local effect)α

Eskilt et. al.,  
arXiv: 2205.13962

 is excluded at  β = 0 3.6σ
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Non-zero EB correlation from Axion oscillation

Since we only solved for the +ve helicity the mode function sources are same for EB or BB/EE

(Maximum CP violation  for assumption)→


