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The WIMP Era in Distress
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The WIMP Era in Distress (According to ChatGPT)

WIMPs retreat, unseen,

Alternatives now emerge,

Mysteries persist.

— ChatGPT

2 / 14



The WIMP Era in Distress (According to ChatGPT)

WIMPs retreat, unseen,

Alternatives now emerge,

Mysteries persist.

— ChatGPT

2 / 14



Beyond the WIMP Paradigm

ULDM
WIMPs
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B − L Dark Photon Dark Matter

• Dark photon from a new gauged U(1)B−L symmetry is a popular BSM extension

• Characterised by two parameters: coupling (gB−L) and mass (mDM)

• Ultralight dark photons lead to an ever-present, oscillating background dark

electric field

• This leads to a very small differential acceleration between materials with different

charge-mass ratios!
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The Optomechanical Sensor

• Sensors use coupling between optical

and mechanical modes to measure

quantities very precisely

• Incredible developments due to

gravitational wave efforts!

• Important parameters:
• Mechanical resonant frequency (ω0)

• Temperature of surroundings (T )

• Sensor mass (msensor)

• Mode decay rates
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Detecting Ultralight Dark Matter

• Sensor constantly immersed in

oscillating dark electric field

• If mirrors made of different materials,

get differential acceleration

• This is our measurable!
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Our Goal

• Cavity accelerometers have been used to draw limits on B − L dark photon DM

Peter W. Graham et al. 1512.06165, Daniel Carney et al. 1908.04797,

Jack Manley et al. 2007.04899

• However, a likelihood-led treatment incorporating stochastic field properties and

DM signal shape is lacking

• Want to develop this treatment in contact with experimentalists in Windchime

Collaboration!

How can optomechanical sensors help us to learn more about the

nature of ULDM?
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The Stochastic Field: Long Observation Time
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• Net field a superposition of

many partial waves oscillating

at slightly different frequencies

ωDM = mDM +
1

2
mDMv2

• Leads to ‘beat-like’ effect on

timescales

τcoh =
1

mDMv2
∼ 106

mDM

• For Tobs ≫ τcoh, our sensor

samples many coherent patches
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The Stochastic Field: Short Observation Time
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• For Tobs ≪ τcoh, our sensor

samples one coherent patch

• We observe a clean sinusoid in

time series

• But now the amplitude is

stochastic!

Focus here on Tobs ≫ τcoh
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ULDM in Frequency Space
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• Fourier space is best place to do our

inferencing

• We consider the power spectral

density, PSD (power per frequency)

• In Tobs ≫ τcoh case, signal appears as

a broadened peak at ω ≈ mDM

• Each frequency bin is exponentially

distributed

Joshua W. Foster et al. 1711.10489

Likelihood(data) ∼ Exp(⟨signal⟩)
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https://arxiv.org/abs/1711.10489


ULDM in Frequency Space: Signal vs Background
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Shot Noise

Thermal Noise

Backaction Noise

msensor = 10 mg

T = 15 mK

ω0 = 1000 Hz

• We have to distinguish this peak from
many background sources:

• Thermal noise

• Shot noise

• Backaction noise
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Excluding Ultralight Dark Photon Dark Matter

Frequentist Limit Setting

1. Assume we see nothing: ‘generate’ Asimov background data set

2. For a given mDM, construct signal given a gB−L ̸= 0

3. Consider log-likelihood ratio test statistic

q = −2 ln

[ L(data | gB−L, mDM)

L(data | gB−L = 0, mDM)

]
(Likelihood for axions developed by Joshua W. Foster et al. 1711.10489):

4. Use q to exclude coupling at desired confidence level! (90%)
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https://arxiv.org/abs/1711.10489


Limits
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Summary

• WIMPs are facing an existential crisis

• Ultralight B − L dark photons are a well-motivated DM candidate

• Optomechanical sensors at up to the task of measuring effects of dark electric field

• A small array could quickly exclude new parameter space!

Optomechanical sensors will form powerful probes of

ultralight dark photon dark matter!
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Constructing Field

Ax ∼
Nwaves∑
i=1

√
ρDM

mZ ′
Re
(
e imDM(1+ 1

2
v2
i )t+θi

)
ε̂ · x̂

v ∼ fSHM(v)

θ ∼ U(0, 2π)

ε̂ ∼ Unit Sphere
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Backgrounds

STh
aa ≡ 4kBTγ

ms

SSN
aa (ω) ≡ ℏκL2

2ωLPL
|χc(ω)|−2|χm(ω)|−2

SBA
aa (ω) ≡ 2ℏωLPL

m2
sL

2κ
|χc(ω)|2

|χm(ω)|−2 = (ω2 − ω2
0)

2 + γ2ω2

|χc(ω)|−2 =
ω2 + κ2/4

κ
.
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Statistics

q = 2
∑
k

[
Sk
aa
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1
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− 1
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)
+ ln
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