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The WIMP Era in Distress
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The WIMP Era in Distress (According to ChatGPT)

WIMPs retreat, unseen,
Alternatives now emerge,
Mysteries persist.
— ChatGPT
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Beyond the WIMP Paradigm
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B — L Dark Photon Dark Matter

Dark photon from a new gauged U(1)g_; symmetry is a popular BSM extension

Characterised by two parameters: coupling (gg—1) and mass (mpur)

Ultralight dark photons lead to an ever-present, oscillating background dark

electric field

This leads to a very small differential acceleration between materials with different
charge-mass ratios!
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The Optomechanical Sensor

e Sensors use coupling between optical
and mechanical modes to measure

quantities very precisely

e Incredible developments due to
gravitational wave efforts!

e Important parameters:
e Mechanical resonant frequency (wp)

e Temperature of surroundings (T)
e Sensor mass (Msensor)

Mode decay rates
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Detecting Ultralight Dark Matter

e Sensor constantly immersed in
oscillating dark electric field

e If mirrors made of different materials,
get differential acceleration

e This is our measurable!

DM Frequency
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e Cavity accelerometers have been used to draw limits on B — L dark photon DM
Peter W. Graham et al. 1512.06165, Daniel Carney et al. 1908.04797,
Jack Manley et al. 2007.04899

e However, a likelihood-led treatment incorporating stochastic field properties and
DM signal shape is lacking

e Want to develop this treatment in contact with experimentalists in Windchime

Collaboration!

How can optomechanical sensors help us to learn more about the
nature of ULDM?
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https://arxiv.org/abs/1512.06165
https://arxiv.org/abs/1908.04797
https://arxiv.org/abs/2007.04899

The Stochastic Field: Long Observation Time

e Net field a superposition of

many partial waves oscillating

2 ' ' ' ' at slightly different frequencies
o _ 1 2
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é timescales
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i g ; . o For Tops > Teon, OUr sensor
Observation Time (in 7o, units) obs = Tcoh

samples many coherent patches
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The Stochastic Field: Short Observation Time

e For Tobs < Teon, our sensor
samples one coherent patch

e We observe a clean sinusoid in

time series

Field Value

e But now the amplitude is
stochastic!

0 2 4 6 8 10 Focus here on T s > Teon
Observation Time (in 7o, units)
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ULDM in Frequency Space

: e Fourier space is best place to do our

gB_1L ~ 10773 inferencin
:|'-\ 10_20 B mpym = 10712eV ]| ¢
= ~ 1500 Hz e We consider the power spectral
i density, PSD (power per frequency)
Nw 10722+ -
E e In T s > 7eon case, signal appears as
g a broadened peak at w ~ mpy
(Q“ 10—24 | _
c% e Each frequency bin is exponentially
A distributed
10-26 Joshua W. Foster et al. 1711.10489
mpM mpm + 27/ Teon
Angular Frequency, w (Hz) Likelihood(data) ~ Exp((signal))
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https://arxiv.org/abs/1711.10489

ULDM in Frequency Space: Signal vs Background
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ULDM in Frequency Space: Signal vs Background
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Excluding Ultralight Dark Photon Dark Matter

Frequentist Limit Setting

1.

Assume we see nothing: ‘generate’ Asimov background data set
For a given mpy, construct signal given a gg_; # 0

Consider log-likelihood ratio test statistic

L(data | gg—1, mpm)

= —2In
I L(data | gg—1 =0, mpwm)

(Likelihood for axions developed by Joshua W. Foster et al. 1711.10489):

. Use g to exclude coupling at desired confidence level! (90%)
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https://arxiv.org/abs/1711.10489
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WIMPs are facing an existential crisis

Ultralight B — L dark photons are a well-motivated DM candidate

Optomechanical sensors at up to the task of measuring effects of dark electric field

A small array could quickly exclude new parameter space!

Optomechanical sensors will form powerful probes of
ultralight dark photon dark matter!
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Constructing Field
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Backgrounds
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Statistics
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