ASTROPHYSICAL SEARCHES FOR BSM PHYSICS

REBECCA LEANE
SLAC NATIONAL ACCELERATOR LABORATORY

PHENO 2023, PITTSBURGH MAY 9TH 2023

Why Astrophysics for Beyond the SM Physics?

Unique searches with astrophysical systems

New astrophysical datasets to discover new particles

Outline

- Cooling from BSM
 - Stars, supernovae
- Heating from BSM
 - Dark Matter and celestial-body capture
 - Telescopes, new technologies
 - Earth, White Dwarfs, Neutron Stars, Exoplanets
- Neutrino and Gamma-Rays from BSM
 - Sun, Jupiter, populations of celestial bodies
- Interesting things I don't have time to mention

COOLING

Out on the outskirts of the Tarantula Nebula...

Out on the outskirts of the Tarantula Nebula...

Neutrinos from Supernova 1987A detected by Kamiokande II, IMB, Baksan

Supernova Energy Deficit

Neutrinos from Supernova 1987A detected by Kamiokande II, IMB, Baksan can't deplete energy needed to make them!

SUPERNOVA 1987A

Can probe many interaction types and particle models: supernova has nucleons, electrons, muons!

Burrows, Ressell, Turner 1990 Raffelt 1996 Hanhart, Phillips, Reddy, Savage 2001 Rrapaj, Reddy 2015 Chang, Essig, McDermott 2016 Bollig, DeRocco, Graham, Janka 2020 Caputo, Raffelt, Vitagliano 2021

Croon, Elor, Leane, McDermott, 2021

Stellar Cooling

Sun

Horizontal Branch Stars

Rebecca Leane (SLAC)

Stellar Cooling

Sun:

+ Luminosity can't decrease!

Horizontal Branch Stars:

+ Helium burning: energy released by fusion puffs up the core of the star and lowers its density

If new energy-loss processes:

-> core contracts, heats it up, enhances rate of helium fusion -> shortened helium-burning lifetime of the star

Rebecca Leane (SLAC)

Sensitivity to nucleon and electron couplings

STARS

(HORIZONTAL BRANCH+SUN)

An, Pospelov, Pradler 2013 Hardy, Lasenby 2016

Croon, Elor, Leane, McDermott, 2021

HEATING

Rebecca Leane (SLAC)

Dark matter capture in celestial bodies

Dark Matter

Steigman, Sarazin, Quintana, Faulkner 1978 Press, Spergel 1985 Gould 1987 Griest, Seckel 1987

Dark matter capture in celestial bodies

Dark Matter

Steigman, Sarazin, Quintana, Faulkner 1978 Press, Spergel 1985 Gould 1987 Griest, Seckel 1987

Dark matter capture in celestial bodies

Optimal Celestial Target?

- Radius: Larger amount of DM captured, larger annihilation signal
- Density: Optical depth → lower cross section sensitivities
- Core temperature: Want to minimize → easier to retain light DM

Rebecca Leane (SLAC)

Optimal Celestial Target + Location

Signal detectability matters!

- Telescope sensitivity to a given flux size?
 - Further away → 1/R^2 suppression
 - Larger objects easier to detect further away
- Background expectation?

Local Position

Age: ~5 Gyr Distance: ~100 pc

DM density/velocity: ~0.4 GeV/cm^3 ~230 km/s

Globular Clusters

Messier 4 (M4)

Age: ~12 Gyr Distance: 2 kpc

DM density/velocity*: ~100 GeV/cm^3, 2 pc ~10 km/s

Galactic Center

Age: ~8 Gyr (varies)
Distance: 8 kpc

DM density/velocity*: ~100 GeV/cm^3, 0.1kpc ~30-100 km/s

Search Locations

Best features:

- ✓ High DM density
- ✓ Low DM velocity
- Close proximity
- ✓ Old environment

Low dust

Rebecca Leane (SLAC)

Optimal Telescopes for Dark Heating

Rebecca Leane (SLAC)

Optimal Telescopes for Dark Heating

Hubble

Near-infrared Optical Ultraviolet

~0.12-2 microns

Data Recording Launched 1990

JWST

Full Infrared Optical

~0.5 - 28 microns

Data Recording Launched 2021

Rubin

Near-infrared Optical

~0.32-1.06 microns

Awaiting Data First light 2024

Roman

Near-infrared Optical

 \sim 0.5 – 2 microns

Awaiting Data Launch 2027

EARTH

Freese 1985
Krauss, Srednicki, Wilczek 1986
Gaisser, Steigman, Tilav 1986
Gould 1987, 1988, 1991, 1992
Gould, Frieman, Freese 1989
Gould, Alam 2001
Starkman, Gould, Esmailzadeh, Dimopoulos 1990
Mack, Beacom, Bertone 2007
Bramante, Buchanan, Goodman, Lodhi 2019
Acevedo, Bramante, Goodman,
Kopp, Opferkuch 2020

+ more

Category: Rocky planet Core temp: ~10^3 K

Escape Velocity: ~11 km/s

EARTH

Available data: 20,000 bore holes drilled throughout crust

- + Geologists extensively studied Earth's internal heat
- + Temperature gradient in borehole is recorded, multiplied by the thermal conductivity of the relevant material yields a heat flux

Benefits:

- + Systematics low
- + Data now
- + Best proximity

Limitation: Higher DM evaporation mass, cross sec reach

-10 -15 SKYLAB -20 $\log \sigma_{\chi_N} \left[\text{cm}^2 \right]$ **IMAX** IMP 7/8 -25 Underground Detectors -30 -35 -40 -45 $\log m_{\chi} \frac{10}{[\text{GeV}]}$ 20 15

Mack, Beacom, Bertone 0705.4298

Rebecca Leane (SLAC)

EARTH

-15 -20 $[cm^2]$ -25 $\log \sigma_{\chi N}$ -30 -35 -40 -45 15 20 10 $\log m_{\chi} [GeV]$

Mack, Beacom, Bertone 0705.4298

See also Bramante, Buchanan, Goodman, Lodhi 1909.11683 (incl Mars)

Rebecca Leane (SLAC)

EARTH

WHITE DWARFS

Available data: Hubble measurements of Messier 4 globular cluster

Limitations:

- + High surface temperature, want high DM density locations
- + DM density NOT known for M4
- + Candidates needed for Galactic Center

Benefits:

- + Do exist in globular cluster cores
- + M4 data now!
- + Low evaporation masses
- + Better cross section sensitivity than Earth

Bell, Busoni, Ramirez-Quezada, Robles, Virgato 2021

WHITE DWARFS

Radius: ~10 km

Mass: ~solar mass

Escape Velocity: ~10^5 km/s

Origin: Collapsed cores of ~ 10 - 25 solar mass stars, supported against grav collapse by neutron degeneracy pressure/nuclear forces

NEUTRON STARS

Gould, Draine, Romani, Nussinov 1989 Goldman, Nussinov 1989 Starkman, Gould, Esmailzadeh, Dimopoulos 1990 Bertone, Fairbairn 2007 Kouvaris 2007 Gonzalez, Reisenegger 2010 Kouvaris, Tinyakov 2011 McDermott, Yu, Zurek 2011 Bramante, Fukushima, Kumar 2013 Bell, Melatos, Petraki 2013 Bramante, Linden 2014 Bertoni, Nelson, Reddy 2014 Bramante, Elahi 2015 Baryakhtar, Bramante, Li, Linden, Raj 2017 Bramante, Delgado, Martin 2017 Raj, Tanedo, Yu 2017 Chen, Lin 2018 Jin, Gao 2018 Garani, Genolini, Hambye 2018 Acevedo, Bramante, Leane, Raj 2019 Hamaguchi, Nagata, Yanagi 2019 Camargo, Queiroz, Sturani 2019 Joglekar, Raj, Tanedo, Yu 2019 Garani, Heeck 2019 Bell, Busoni, Robles 2019 Keung, Marfatia, Tseng 2020 Bell, Busoni, Robles 2020 Bai, Berger, Korwar, Orlofsky 2020 Bell, Busoni, Motta, Robles, Thomas, Virgato 2020 Leane, Linden, Mukhopadhyay, Toro 2021

+ even more

NEUTRON STARS

Available data:

None yet, potentially use upcoming infrared telescopes

Limitations:

- + NS are small, so need to use target close by
- + No yet known candidates
- + Exposure times required can be large

Benefits:

- + Superior cross section sensitivity
- + Kinetic heating boost in rate
- + Broad class of particle models

Baryakhtar, Bramante, Li, Linden, Raj 2017

NEUTRON STARS

See also Bell, Busoni, Motta, Robles, Thomas, Virgato 2020

EXOPLANETS

Leane, Smirnov 2020

Exoplanets can potentially be used to map the Galactic DM density

Available data:

Little yet, use upcoming infrared telescopes

Benefits:

- + Large statistics; some candidates already exist
- + Cold (good signal over background)
- + Large radii, easier to detect than NS
- + Low evaporation masses
- + Potential probe of DM density profile

Limitations:

- + Having enough acceptable candidates
- + Not robustly known interiors
- + Cooling systematics

EXOPLANETS

Exoplanet cross section sensitivity

Leane + Smirnov, 2020

Exoplanet cross section sensitivity

Low DM mass threshold set by evaporation, depends on model. Can be very low!

See Javier Acevedo's talk this afternoon!

Actions for successful discovery/exclusion

Neutron stars:

- Find a candidate close by and old enough! (FAST radio search)
- Enough observing time granted

White dwarfs:

- Understand astrophysical uncertainties in clusters
- More candidates

Exoplanets:

- Large statistical sample obtained to overcome systematics
- Detailed studies of atmosphere effects including DM

GAMMA RAYS AND NEUTRINOS

Press, Spergel 1985

Krauss, Freese, Press, Spergel 1985

Silk, Olive, Srednicki, 1985

Stats: Hot, big, close

Escape velocity: 615 km/s

Available data:

Gamma-ray data (e.g. Fermi, HAWC) Neutrino data (e.g. SuperK, IceCube)

Limitations:

+ Hot (more easily ejects light DM)

Benefits:

- + Huge
- + Proximity
- + Excellent data

THE SUN

DM can be captured by scattering with solar matter, then annihilate to neutrinos

 DM can be captured by scattering with solar matter, then annihilate to neutrinos

- DM can be captured by scattering with solar matter
- If DM annihilates to long-lived particles, neutrino signal is boosted

- DM can be captured by scattering with solar matter
- If DM annihilates to long-lived particles, neutrino signal is boosted

Leane, Ng, Beacom, 2017

Rebecca Leane (SLAC)

- DM can be captured by scattering with solar matter
- If DM annihilates to long-lived particles, neutrino signal is boosted

IceCube 2022

Leane, Ng, Beacom, 2017

Long-lived particle scenario, excellent gamma-ray sensitivity

Leane, Ng, Beacom (PRD '17)

Rebecca Leane (SLAC)

Long-lived particle scenario, excellent gamma-ray sensitivity

Leane, Ng, Beacom (PRD '17)
Beacom, Leane, Linden, Ng, Peter, Zhou
Un Nisa + HAWC Collaboration (PRD '18)
Rebecca Leane (SLAC)

JUPITER

Kawasaki, Murayama, Yanagida 1992

Adler 2009

Batell, Pospelov, Ritz, Shang 2009

Leane, Linden 2021

Li, Fan 2022

French, Sher 2022

Why Jupiter?

Sun

BIG Hot Jupiter

BIG Cold

Solar Comparison

Sun

Long-Lived Mediator Limits

Leane, Ng, Beacom (PRD '17) Leane + HAWC Collaboration (PRD '18)

Jupiter

Cooler than the Sun: MeV-DM mass sensitivity!

Jupiter in Gamma Rays

What does Jupiter look like in gamma rays? No one had ever really checked!

If we find gammas, they could be from:

- + acceleration of cosmic rays in Jovian magnetic fields
- + interaction of cosmic rays with Jupiter's atmosphere

...or something exotic (dark matter)!

Jupiter in Gamma Rays

Leane + Linden '21

New dark matter sensitivity

Some assumptions:

- + direct decay to gammas (but other final states possible)
- + mediator decay length
- > Jupiter radius
- + equilibrium
- + low mass end model dependent

Not guaranteed for all models!

Optimal Celestial Target for Gammas?

Sun

Jupiter

Neutron Star

Brown Dwarf

Leane, Ng, Beacom 2017 Leane + HAWC Collaboration 2018

Leane, Linden 2021

Long-Lived Mediator Limits

Rebecca Leane (SLAC)

Galactic Center Population Signal

- Use all the neutron stars, all the brown dwarfs
 - Compare with Fermi and H.E.S.S. data for Galactic Center
 - No model assumptions on mediator, other than must escape
- Our new signal follows matter density: DM density * stellar density
 - DM Halo annihilation scales with DM density squared

Sensitivity w/ Brown Dwarfs and Neutron Stars

Leane, Linden, Mukhopadyay, Toro 2021 Rebecca Leane (SLAC)

DM Capture and Distribution Treatments

How to Treat Capture:

New simulations, can account for varied kinematic and interaction regimes

w/ Juri Smirnov
(Package to be released soon!)

DM Capture and Distribution Treatments

How to Treat Capture:

New simulations, can account for varied kinematic and interaction regimes

w/ Juri Smirnov
(Package to be released soon!)

How to Treat Distributions:

Calculation including diffusion and live incoming DM fluxes

Leane + Smirnov '22

Interesting things I didn't mention...

• EoS effects on NSs, gravitational waves

Panotopoulos, Lopes 2017 Ellis et al 2018 Nelson, Reddy, Zhou, 2018 Collier, Croon, Leane, 2022

DM in Pop III stars

Freese, Spolyar, Aguirre 2008 Freese, Gondolo, Sellwood, Spolyar 2008

Stellar evolution effects

Taoso et al 2010 Frandsen, Sarkar 2010 Zentner, Hearin 2011

Creation of black holes, destruction of stars

Gould, Draine, Romani, Nussinov 1989

Evaporation of black holes, neutrinos

Acevedo, Bramante, Goodman, Kopp, Opferkuch 2020

Production of Axions or Gamma Rays in Stellar Magnetic Fields

See Andrew Long's talk shortly!

Rebecca Leane (SLAC)

Summary

- Astrophysical systems allow strong probes of BSM physics!
- Stellar and supernova energy loss probes light particles

- Heating and neutrino/gamma-ray detection possible
 - Earth, Sun, and Jupiter now already have strong constraints

- Exoplanets, Planets, White Dwarfs, and Neutron Stars may provide new DM sensitivities
- New technologies coming soon, also, hopefully new physics!

EXTRA SLIDES

Exoplanet Search Targets

Mass: 0.001- 0.01 Mjup Radius: ~0.1 - 1 Rjup

<u>Jupiters + Super Jupiters:</u>

Mass: 1 – 13 Mjup Radius: ~1 Rjup

Calculating Exoplanet Temperatures

• Contributions to temperature from external heat (i.e. nearby stars), internal heat (e.g. from formation or burning processes), and dark matter:

$$\Gamma_{\rm heat}^{\rm tot} = \Gamma_{\rm heat}^{\rm ext} + \Gamma_{\rm heat}^{\rm int} + \Gamma_{\rm heat}^{\rm DM} = 4\pi R^2 \,\sigma_{\rm SB} \,T^4 \,\epsilon.$$

- External heat: assume zero, means we need exoplanets either very far from their host, or not bound at all (rogue planets)
- Internal heat: determined by cooling rate over time, choose old exoplanets (e.g. 1-10 gigayears old) to minimize internal heat

Calculating Exoplanet Temperatures

• Contributions to temperature from external heat (i.e. nearby stars), internal heat (e.g. from formation or burning processes), and dark matter:

$$\Gamma_{\rm heat}^{\rm tot} = \Gamma_{\rm heat}^{\rm ext} + \Gamma_{\rm heat}^{\rm int} + \Gamma_{\rm heat}^{\rm DM} = 4\pi R^2 \,\sigma_{\rm SB} \,T^4 \,\epsilon$$

Heat power from DM:

- DM density throughout Galaxy
- DM halo velocity
- Exoplanet escape velocity

Calculating Exoplanet Temperatures

• Contributions to temperature from external heat (i.e. nearby stars), internal heat (e.g. from formation or burning processes), and dark matter:

$$\Gamma_{\text{heat}}^{\text{tot}} = \Gamma_{\text{heat}}^{\text{ext}} + \Gamma_{\text{heat}}^{\text{int}} + \Gamma_{\text{heat}}^{\text{DM}} = 4\pi R^2 \,\sigma_{\text{SB}} \, T^4 \,\epsilon.$$

Heat power from DM:

DM density throughout Galaxy:

$$\rho_\chi(r) = \frac{\rho_0}{(r/r_s)^\gamma (1 + (r/r_s))^{3-\gamma}}$$

- Relevant velocities:
 - DM halo velocity
 - Exoplanet escape velocity

$$v_{\rm esc}^2 = 2G_N M/R$$

$$\Gamma_{\text{heat}}^{\text{DM}} = f \pi R^2 \rho_{\chi}(r) v_0 \left(1 + \frac{3}{2} \frac{v_{\text{esc}}^2}{v_d(r)^2} \right)$$

Exoplanet temperatures vs sensitivity

35 Mjup – 55 Mjup

- NFW, gNFW, Burkert are DM profiles, shaded area is exoplanet mass range
- Sensitivity truncates at ~0.1kpc, due to stars per pixel, and dust scattering

Leane + Smirnov, 2020

Sensitivity to DM halo parameters

- Direct probe of unknown DM density profile
- How many exoplanets do we need to detect?
- What level of precision do we need to measure exoplanet:
 - Radii?
 - Temperatures?
 - Masses?

$$\rho_{\chi}(r) = \frac{\rho_0}{(r/r_s)^{\gamma} (1 + (r/r_s))^{3-\gamma}}$$

Exoplanet masses vs sensitivity

Mjup – 14 Mjup

14 Mjup – 35 Mjup

35 Mjup – 55 Mjup

Lower masses:

DM heat > internal heat at all positions

Higher masses:

Strongest signal towards Galactic Center, local DM heating signal difficult to outperform internal heat

Rebecca Leane (SLAC)

Prospects for these searches?

Planet	Radius (R_{jup})	Mass (M_{jup})	Distance	Orbit	Temp (No DM)	Temp (with DM)	Ref
Epsilon Eridani b	1.21	1.55	3 рс	3.4 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[84]
Epsilon Indi A b	1.17	3.25	3.7 pc	11.6 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[85]
Gliese 832 b	1.25	0.68	4.9 pc	3.6 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[86]
Gliese 849 b	1.23	1.0	8.8 pc	2.4 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[87]
Thestias	1.19	2.3	$10 \mathrm{\ pc}$	1.6 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[88]
Lipperhey	1.16	3.9	$12.5~\rm pc$	5.5 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[89]
НD 147513 b	1.22	1.21	$12.8~\mathrm{pc}$	1.3 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[90]
Gamma Cephei b	1.2	1.85	$13.5~\rm pc$	2.0 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[91]
Majriti	1.16	4.1	13.5 pc	2.5 au	$\sim 218~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[92]
47 Ursae Majoris d	1.2	1.64	14 pc	11.6 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[93]
Taphao Thong	1.2	2.5	$14 \mathrm{\ pc}$	2.1 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[93]
Gliese 777 b	1.21	1.54	15.9 pc	4.0 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[94]
Gliese 317 c	1.21	1.54	15.0 pc	25.0 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[95]
q ¹ Eridani b	1.23	0.94	17.5 pc	2.0 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[87]
НD 87883 Ь	1.21	1.54	$18.4~\mathrm{pc}$	3.6 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[96]
ν^2 Canis Majoris c	1.24	0.87	19.9 pc	2.2 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[97]
Psi ¹ Draconis B b	1.21	1.53	$22.0~\rm pc$	4.4 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[98]
НD 70642 b	1.19	1.99	$29.4~\mathrm{pc}$	3.3 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[99]
HD 29021 b	1.2	2.4	$31~{ m pc}$	2.3 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[100]
НD 117207 b	1.2	1.9	$32.5~\mathrm{pc}$	4.1 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[101]
Xolotlan	1.2	0.9	$34.0 \mathrm{\ pc}$	1.7 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[102]
НАТ-Р-11 с	1.2	1.6	$38.0~\mathrm{pc}$	4.1 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[103]
HD 187123 c	1.2	2.0	$46.0~\mathrm{pc}$	4.9 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[104]
HD 50499 b	1.2	1.6	$46.3~\rm pc$	3.8 au	$\lesssim 200~\mathrm{K}$	$\lesssim 650~\mathrm{K}$	[101]
Dim	1.0	1 1	40.4	0.0	200 V	< 050 V	[105]

- Many candidates already exist!
- Gaia may be able to see up to around 90,000 planets within 100 pc (local search)
- WFIRST/Roman expects to detect least several thousand exoplanets in the inner galaxy

Local DM-Heated Exoplanet Search

- Local fluxes easier to detect, so lower normalization from emissivity isn't a severe penalty
- Allows use of more powerful filters: best JWST filter sensitivity is with higher temps (in this case, higher wavelength peaks)
- Local exoplanets with lower emissivities can extend local sensitivity to DM heating

AGE - COOLING CURVES

