astrophysical and cosmological probes axion-like particles and dark photons

Andrew Long
Rice University

@ Phenomenology 2023 Symposium May 9, 2023

"explore the dungeon"
"discover the treasure"

How will we discover new physics?

What dungeons must we explore to find this treasure?

adventuring gear

the maps contains clues ...

the treasure is out there somewhere, we just don't know how to reach it

a compass

the compass guides our path ...

it points the shortest way to reach the treasure

adventuring gear

a map

the maps contains clues ...

data reveals the presence of new physics, but a full understanding is still out of reach

a compass

the compass guides our path ...

the success of existing theory furnishes organizing principles and points a way forward

Symmetry & symmetry breaking determine the structure of the Standard Model including the properties and interactions of its particles

Let symmetry guide our search for new physics!

Standard Model

chiral symmetry breaking

light pions

light axion-like particles

light axion-like particles

- (1) Axion-enhanced X-rays from compact stars
- (2) Radio emission from axion clumps
- (3) CMB birefringence from axion strings

light hidden/dark photons

- (4) Producing dark photon dark matter
- (5) Radio bursts from dark photon stars

(1) Axion-enhanced X-raysfrom compact stars

Where do axions come from?

$$P = A\sigma T^4 \approx (5 \,\mathrm{Watt}) \left(\frac{A}{1 \,\mathrm{cm}^2}\right) \left(\frac{T}{10^3 \,\mathrm{K}}\right)^4$$

 $\Rightarrow \sim 10^{19} \,\mathrm{photons} \,\mathrm{per} \,\mathrm{second}$

$$P = \frac{g_{aee}^{2}}{e^{2}} A \sigma T^{4} \approx \left(10^{-25} \text{ Watt}\right) \left(\frac{g_{aee}}{10^{-13}}\right)^{2}$$

$$\Rightarrow \sim 10^{-6} \text{ axions per second}$$

not a lot of axions!

Where can we find a stronger source of ALPs?

[Krauss, Moody, & Wilczek (1984)] [Raffelt (1986)] [Nakagawa, Adachi, Kohyama, & Itoh (1987,88)]

constraints

[Miller Bertolami et. al. (2014)] $g_{aee} < 3 \times 10^{-13}$

hints

$$g_{aee} \neq 0 \quad (\sim 2\sigma)$$

 (3σ)

How to test that ALPs cause cooling?

$$\Gamma \approx \left(10^{-19} \text{photons/sec}\right) \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{g_{a\gamma\gamma}}{10^{-11}/\text{GeV}}\right)^2$$

$$\times \left(\frac{B_T}{5 \text{ T}}\right)^2 \left(\frac{L}{100 \text{ cm}}\right)^2 \left(\frac{d_{\text{WD}}}{10 \text{ pc}}\right)^{-2}$$

we can't wait till the axions reach Earth!

Axion-photon conversion at the star

[D. E. Morris (1986)] [Raffelt & Stodolsky (1987)] [Gill & Heyl (2011)] [Fortin & Sinha (2018)]

Strong magnetic field:

 \rightarrow Neutron stars (magnetars): ~10¹² – 10¹⁵ G

 \rightarrow Magnetic white dwarfs: $\sim 10^6 - 10^9$ G

Filling large volume:

→ Neutron stars (magnetars): ~10 km

→ Magnetic white dwarfs: ~ 0.01 R_{sun}

Hot plasma radiates axions:

→ Core temperature: 10⁷ K ~few keV

$$E_a = T_{\text{core}} = E_{\gamma} = X$$
-ray

signal = thermal X-ray emission ($T_{core} \sim 10^7 \text{ K} \sim \text{keV}$) background = surface emission negligible ($T_{surface} \sim 10^4 \text{ K}$)

Expected X-ray signal from MWDs

[Dessert, AL, Safdi, arXiv:1903.04088]

quasi-thermal spectrum

 $g_{aee} = 10^{-13}$ $g_{a\gamma\gamma} = 10^{-11} \text{ GeV}^{-1}$ $M_{WD} = 1.32 \ M_{\odot}$ $d_{WD} = 29.54 \text{ pc}$ $T_c = 2 \times 10^7 \text{ K}$ = 1.7 keV

rising through 1-10 keV where backgrounds are falling

top 10 MWD candidates

	$M_{ m WD}~[M_{\odot}]$	$R_{\mathrm{WD}}\left[R_{\odot} ight]$	$L_{\gamma} [L_{\odot}]$	$T_{ m eff}$ [K]	B [MG]	$d_{\mathrm{WD}}\left[\mathrm{pc}\right]$	$F_{2-10} [\mathrm{erg/cm}^2/\mathrm{s}]$
RE J0317-853	1.32	0.00405	0.0120	30000	200	29.54	6.8×10^{-14}
WD 2010+310	1^*	0.00643^{*}	0.00566	19750	520	30.77	4.4×10^{-14}
WD 0041-102 (Feige 7)	1.05	0.00756	0.00635	18750	35	31.09	3.0×10^{-14}
WD 1031+234	0.937	0.00872	0.0109	20000	200	64.09	2.3×10^{-14}
WD 1533-057	0.717	0.0114	0.0121	18000	31	68.96	1.3×10^{-14}
WD 1017+367	0.730	0.0111	0.0082	16500	65	79.24	7.1×10^{-15}
WD 1043-050	1.02	0.00787	0.00388	16250	820	83.33	5.4×10^{-15}
WD 1211-171	1.06	0.00754	0.00992	21000	50	92.61	5.4×10^{-15}
SDSS 131508.97+093713.87	0.848	0.00968	0.01347	20000	14	101.7	3.5×10^{-15}
WD 1743-520	1.13	0.00681	0.00184	14500	36	38.93	2.9×10^{-15}

1000's of known WDs (Gaia), but only 100's have B-field measurements

(for $m_a = 10^{-9} \text{ eV}$ and $|g_{aee} g_{ayy}| = 10^{-24} \text{ GeV}^{-1}$)

What do we learn from Chandra observations?

[Dessert, AL, Safdi, arXiv:2104.12772]

Chandra observation

- → 37.42 ks (~10 hr) of data, Dec 18, 2020
- → No photon counts observed near source

Constraints on axion emission / X-ray conversion

- → Upper limit on product of couplings g_{aee} * g_{ayy}
- → Can be recast as a limit in g_{aγγ} alone

ALP emission from exotic couplings (

(ongoing work)

Hong-Yi Zhang (Rice U grad)

astro implications:

- axion emission off of muons in a neutron star
- baryon-destruction in a neutron star & heating
- connections with lab probes of axion LFV & BNV interactions

(2) Radio emission from axion clumps

Axion-like particles as dark matter

Conversion in neutron star magnetospheres

radio axion $f_{\gamma} = m_a/2\pi \approx \left(0.2\,\mathrm{GHz}\right) \left(\frac{m_a}{10^{-6}\,\mathrm{eV}}\right)$ neutron star

[Hook, Kahn, Safdi, Sun (2018)], [Safdi, Sun, Chen (2018)], [Foster et al (2022)]

constraints derived from an analysis of archival Greenbank Telescope data

What if the axion DM is clumped up?

[Amin, AL, Mou, Saffin, arXiv:2103.12082]

dense axion star:

a coherent "clump" of axion dark matter

coupling to electromagnetism:

new terms in Maxwell's equations

$$\mathscr{L}_{\mathrm{int}} = -\frac{1}{4}g_{a\gamma}\phi F\tilde{F} \ \begin{cases} \ddot{\phi} - \nabla^2\phi + \partial_\phi V = g_{a\gamma} \boldsymbol{E} \cdot \boldsymbol{B} \,, \\ \dot{\boldsymbol{E}} = \nabla \times \boldsymbol{B} - g_{a\gamma} \left(\dot{\phi} \boldsymbol{B} + \nabla\phi \times \boldsymbol{E}\right) \,, \\ \dot{\boldsymbol{B}} = -\nabla \times \boldsymbol{E} \,, & \text{effective current density} \\ \nabla \cdot \boldsymbol{E} = -g_{a\gamma}\nabla\phi \cdot \boldsymbol{B} \,, \\ \nabla \cdot \boldsymbol{B} = 0 \,. & \text{effective charge density} \end{cases}$$

background magnetic field

induced electric dipole

background electric field

induced magnetic dipole

a source of EM radiation!

EM radiation from an axion clump

[Amin, AL, Mou, Saffin, arXiv:2103.12082]

shading shows intensity of EM field

$$P_{\text{dipole}} = \frac{g_{a\gamma}^2 \omega^4 \tilde{\varphi}^2(\omega)}{12\pi} \left(|\bar{\boldsymbol{B}}|^2 + |\bar{\boldsymbol{E}}|^2 \right)$$

Zong-Gang Mou (Rice U postdoc)

Connection with astrophysics

Astrophysical implications worth exploring more closely:

- Radio bursts from NS encounters
- Transient rather than stochastic
- NS environment contains plasma allowing for resonant conversion (not considered here)
- Robust rate estimates require careful population modeling

(3) CMB birefringence from axion strings

How do axions make strings?

[Buschmann et. al. (2022)]

string formation: early-universe phase transition Field space Phys

[graphic thanks to Mudit Jain (2021)]

string network simulation:

- string network is in scaling
- new loops are formed from reconnection
- loops emit axions and collapse
- typical string length tracks Hubble
- average energy density tracks Hubble

How can we detect axion strings in the Universe today?

How could we detect an axion string?

[Carroll, Field, Jackiw (1990,91)], [Harari, Sikivie (1992)] [Fedderke, Graham, Rajendran (2019)], [Agrawal, Hook, Huang (2019)] [Yin, Dai, Ferraro (2021) & (2023)]

assume interaction with electromagnetism: standard Chern-Simons coupling

$$\mathscr{L}_{\rm int} = -\frac{1}{4} g_{a\gamma\gamma} a F \tilde{F}$$

axion-induced birefringence:

an electromagnetic wave traveling through a varying axion field has its plane of polarization rotated

^{*} birefringence can be measured through E-B cross correlation

Birefringence signal & measurement

[Jain, AL, Amin, arXiv:2103:10962] [Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

Ray Hagimoto (Rice U grad)

analytical approximation mean of simulations

Mudit Jain (Rice U postdoc)

 10^{0}

 10^{-}

* need $m_a \lesssim 3H_{\rm cmb} \approx 10^{-28} \, {\rm eV}$ for the network to survive until after recombination

Constraints on axion string networks

[Jain, AL, Amin, arXiv:2103:10962] [Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

measurements of CMB polarization: no evidence for anisotropic birefringence

a constraint on axion strings networks & their coupling to electromagnetism:

meaningful constraints:

SPTPOL: $A^2 \xi_0 < 3.7 \text{ at } 95\% \text{ CL}$

Incompatibility with isotropic birefringence

[Jain, AL, Amin, arXiv:2103:10962] [Jain, Hagimoto, AL, Amin, arXiv:2208.08391]

claimed detection of isotropic birefringence: same rotation angle across the whole sky

(using *Planck & WMAP* data)

$$\alpha_{00} = -1.21^{\circ + 0.33^{\circ}}_{-0.32^{\circ}} (68\% \text{ CL})$$

[Minami & Komatsu (2020)] [Diego-Palazuelos et. al. (2022)] [Eskilt (2022)] [Eskilt & Komatsu (2022)] the isotropic signal is strongly in tension with limits on anisotropic BF if they both arise from axion-string induced birefringence

Birefringence non-Gaussianity (ongoing work)

we're working to quantify the non-Gaussianity and develop tests to extract these features from the data

Ray Hagimoto (Rice U grad)

(4) Producing dark photon dark matter

Growing interest in wave-like vector dark matter

[Snowmass 2021 – Wave Dark Matter report]

Impressive abundance and diversity of detection strategies in the lab

Whereas making a vector out of scalar dark matter requires taking a gradient, vector dark matter avoids this velocity suppression

A playground of couplings to explore: kinetic mixing, gauged B-L, gauged L_e - L_{μ} , ...

Dorian Amaral (Rice U postdoc)

A dark photon production problem

[Nelson & Scholtz (2011)], [Arias, Cadamuro, Goodsell, Jaeckel, & Redondo (2012)]

[Co, Pierce, Zhang, & Zhao (2018)] (plot)

[Agrawal, Kitajima, Reece, Sekiguchi, & Takahashi (2018)]

[Bastero-Gil, Santiago, Ubaldi, & Vega-Morales (2018)]

[Dror, Harigaya, & Narayan (2018)]

Misalignment production?

- Not viable for vectors!
- Potential energy redshifts away during inflation

$$\rho_{\phi} \sim m^2 \phi^2 \sim a^0$$

$$\rho_A \sim g^{\mu\nu} m^2 A_{\mu} A_{\nu} \sim a^{-2}$$

Transfer from a scalar?

Burst of activity in 2018

Gravitational production of dark photons

[Graham, Mardon, Rajendran (2015)], [Ahmed, Grzadkowski, Socha (2000)] [Kolb & Long, arXiv:2009.03828]

Ask: how does a massive vector field behave in an inflationary cosmology?

Quantum field fluctuations during inflation survive as dark matter density perturbations today

Gravitational production of massive spin-2

[Kolb, Ling, AL, & Rosen, arXiv:2302.04390]

relic abundance

FRW Higuchi bound $m^2 > 2H^2(1-\epsilon)$

Siyang Ling (Rice U grad)

Dark photon emission from cosmic strings

[AL & Wang, arXiv:1901.03312]

Ultra-light dark photons may arise from an Abelian-Higgs model with a tiny gauge coupling.

$$\mathcal{L} = |D_{\mu}\Phi|^{2} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \lambda(|\Phi|^{2} - v^{2}/2)^{2}$$

$$D_{\mu}\Phi = \partial_{\mu}\phi + ieA_{\mu}\Phi$$

$$(m_{A} = ev) \ll (m_{\rho} = \sqrt{2\lambda}v)$$

The early-universe symmetry breaking phase transition creates a network of cosmic strings.

Dark photons are emitted efficiently from the string network – like Goldstone emission from global strings – and become nonrelativistic before today.

relic abundance

Production from strings can explain the origin of dark photon dark matter for a wide range of masses

(5) Radio bursts from dark photon stars

A dark matter clump with spin

spatially-coherent clump of dark photons:

- bounded by gravity or nongravitational self-interaction
- lowest-energy configurations carry macroscopic spin
- form during structure formation (seen in simulations)
- if gravitationally bounded ...

$$M \sim (10^{-7} M_{\odot}) (m/10^{-6} \text{ eV})^{-1}$$

 $S \sim (10^{65} \hbar) (m/10^{-6} \text{ eV})^{-2}$
 $R \sim (1 \text{ km}) (m/10^{-6} \text{ eV})^{-1}$

 $oldsymbol{S}_{ ext{tot}} = ec{0}$

 $\lambda = 0$

How can we detect these objects in galaxy halos?

[Brito & et. al. (2015)], [Aoki et. al. (2017)], [Adsheaed & Lozanov (2021)], [Chen et. al. (2023)] [Jain & Amin (2021)], [Zhang, Jain, & Amin (2021)], [Jain (2022)], [Amin, Jain, Karur, Mocz (2022)]

Mustafa Amin (Rice U faculty)

Mudit Jain (Rice U postdoc)

 $oldsymbol{S}_{\mathrm{tot}} = oldsymbol{1}$

Electromagnetic radiation signal

[Amin, AL, & Schiappacasse, arXiv:2301:11470]

assume coupling to electromagnetism:

via dimension-6 operators

$$\mathcal{O}_{1} = -\frac{1}{2}F_{\mu\nu}\tilde{F}^{\mu\nu}(X \cdot X) \qquad \approx 2(\boldsymbol{E} \cdot \boldsymbol{B})(\boldsymbol{X} \cdot \boldsymbol{X}) \\
\mathcal{O}_{2} = -\frac{1}{2}F_{\mu\nu}F^{\mu\nu}(X \cdot X) \qquad \approx (\boldsymbol{E} \cdot \boldsymbol{E})(\boldsymbol{X} \cdot \boldsymbol{X}) - (\boldsymbol{B} \cdot \boldsymbol{B})(\boldsymbol{X} \cdot \boldsymbol{X}) \\
\mathcal{O}_{3} = F_{\mu\rho}F^{\nu\rho}X^{\mu}X_{\nu} \qquad \approx (\boldsymbol{B} \cdot \boldsymbol{B})(\boldsymbol{X} \cdot \boldsymbol{X}) - (\boldsymbol{E} \cdot \boldsymbol{X})^{2} - (\boldsymbol{B} \cdot \boldsymbol{X})^{2} \\
\mathcal{O}_{4} = \tilde{F}_{\mu\rho}\tilde{F}^{\nu\rho}X^{\mu}X_{\nu} \qquad \approx (\boldsymbol{E} \cdot \boldsymbol{E})(\boldsymbol{X} \cdot \boldsymbol{X}) - (\boldsymbol{E} \cdot \boldsymbol{X})^{2} - (\boldsymbol{B} \cdot \boldsymbol{X})^{2} \\
\mathcal{O}_{5} = F_{\mu\rho}F^{\nu\rho}\partial^{\mu}X_{\nu} \qquad \approx (\boldsymbol{E} \times \boldsymbol{B}) \cdot \dot{\boldsymbol{X}}.$$

Enrico Schiappacasse (Rice U postdoc)

radiation from solitons in vacuum:

- oscillating dark photon field triggers parametric resonance in the electromagnetic field
- we derive condition for parametric resonance:

$$g^2 \bar{X}^2 mR \gtrsim 1$$

emission is a narrow radio line

$$f_{\gamma} \approx m/2\pi \approx (0.2 \text{ GHz})(m/10^{-6} \text{ eV})$$

radiation pattern: depends on the operator & polarization of the soliton

Astrophysical implications

[Tkachev (2014)], [Levkov, Panin, & Tkachev (2000], [Hertzberg & Schiappacasse (2018)] [Amin, AL, & Schiappacasse, arXiv:2301:11470]

to activate parametric resonance, the clump mass must exceed a threshold value

$$M \gtrsim (2 \times 10^{-9} M_{\odot}) (m/10^{-6} \,\text{eV})^{-1} (g/10^{-10} \,\text{GeV}^{-1})^{-2/3}$$

this may occur when clumps merge in galaxy halos today

signal: strong, transient, narrow radio burst

summary & conclusion

Symmetry principles guide us to explore extensions of the Standard Model containing light axion-like particles and hidden/dark photons

We must 'delve into every dungeon' if we seek to explore these particles through their myriad manifestations:

dark radiation, dark matter, clumps / solitons, strings, ...

Astrophysical and cosmological observables (X-ray, radio, birefringence) will continue to be a pathway to discovery

