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New scalars can mediate macroscopic forces

• Two possible fermion vertices:

• In this talk we’ll only care about the scalar-scalar potential:
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Single-particle versus collective interactions
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A sketch of the experiment
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Coherence from separated lengthscales
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Coherence from separated lengthscales
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Structure factors: scaling behavior

Coherent over 
entire sphere

Fully incoherent
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Applies to both neutron 
and X-ray scattering



Target material candidates
• Single-material:

• Noble “snow”

• Aerosols

• Boiling liquids

• Two-material:
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Image from 
https://www.youtu
be.com/watch?v=Qt
DPv637KHY&ab_ch
annel=AttilaDobi , 
from Carter Hall’s 
group at UMD

K. Okada et al., Sci. & 
Tech. of Adv. Materials 
12, 064701 (2011)

https://www.youtube.com/watch?v=QtDPv637KHY&ab_channel=AttilaDobi
https://www.youtube.com/watch?v=QtDPv637KHY&ab_channel=AttilaDobi
https://www.youtube.com/watch?v=QtDPv637KHY&ab_channel=AttilaDobi
https://www.youtube.com/watch?v=QtDPv637KHY&ab_channel=AttilaDobi


Sensitivity projections
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Astrophysical bounds are 
typically below the bottom 
of the plot, but are highly 
model-dependent



Thank you!

Questions?
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Backup Slides
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Outline

• New forces: motivation and previous experiments

• Single-material targets: how they work and possible implementation

• Two-material targets: challenges and possible implementation
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New scalars can mediate macroscopic forces

• Two possible fermion vertices:

• In this talk we’ll only care about the scalar-scalar potential:
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Existing limits on new forces

J. Murata and S. Tanaka, Class. 
Quant. Grav. 32 033001 (2015)

Lunar ranging, 
planetary orbits

Neutron scattering 
(not shown here)
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(Relatively) recent 
limits using neutron 
scattering from xenon

Potential reach of 
this work’s proposal

Y. Kamiya et al., PRL 
114, 161101 (2015)

Existing limits on new forces
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Single-particle versus collective interactions
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Outline

• New forces: motivation and previous experiments

• Single-material targets: how they work and possible implementation

• Two-material targets: challenges and possible implementation
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A sketch of the experiment
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Three main sources of neutron scattering
Tw

o
-M

aterial
B

ackgro
u

n
d

Sin
gle-M

aterial

Plot is for noble 
elements: otherwise 
electromagnetism is 
much more 
complicated
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New forces are most visible at

New force most visiblePlot is for noble 
elements: otherwise 
electromagnetism is 
much more 
complicated
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Optimal angles are phase space-suppressed

New force most visible
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electromagnetism is 
much more 
complicated
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A familiar modification: Bragg scattering

Image from 
https://commons.wikimedia.org/
wiki/File:Bragg_diffraction_2.svg
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Target structure can change scattering 
distributions
• Each scatterer in the target comes in with a factor of

due to different path lengths

• The total scattering cross-section from a collection of identical 
scatterers is then proportional to

The “structure factor”
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Coherence from separated lengthscales
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negligible phase
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Coherence from separated lengthscales
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Structure factors for uniform spheres: exact 
form
• The structure factor of a sphere of radius      with number density      is

• Averaging over a small spread in radii smooths this to

Incoherent 
scattering
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Structure factors for uniform spheres: scaling 
behavior
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Structure factors for uniform spheres: scaling 
behavior

Coherent over 
entire sphere

Fully incoherent
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Structure enhances low-angle scattering
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The problem: how do you distinguish a new 
force from a change in the structure factor?
• Both new forces and structure factors 

look like low-angle bumps

• No way to know the structure factor a 
priori
• In fact, a typical use of neutron scattering 

is to measure structure factors
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The solution: X-ray scattering

• Can perform the same measurements with X-rays

• X-ray scattering distributions will be proportional to the same 
structure factor
• Structure factors are a property of geometry alone

• Then look at
Compare to 
prediction

Measurable
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Single-material target candidates

• Noble “snow”

• Aerosols

• Boiling liquids

Image from 
https://www.youtu
be.com/watch?v=Qt
DPv637KHY&ab_ch
annel=AttilaDobi , 
from Carter Hall’s 
group at UMD
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Signal fitting and statistics

• Given a signal, want to compare two fits:

• Formally done using an F-test of whether improvement in fit from 
including new force parameters is significant Tw

o
-M

aterial
B

ackgro
u

n
d

Sin
gle-M

aterial

35



Projected sensitivity: single-material targets
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Outline

• New forces: motivation and previous experiments

• Single-material targets: how they work and possible implementation

• Two-material targets: challenges and possible implementation
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• Noble elements have simpler electromagnetic scattering, but giving 
them structure is hard

• However, many other solids have 
structures of the right size; can
then add noble gas to them

• Two broad categories:
• Porous

• Granular

Two-material targets: less effective but more 
certain

K. Okada et al., Sci. & 
Tech. of Adv. Materials 
12, 064701 (2011)
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Structure factors for two-material targets: 
contrast dependence
• Coherent scattering depends only on the “scattering length density,” 

or “SLD” of a material: 

• Structure factors thus depend only on the contrast between the SLD 
of different regions:
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Two-material target candidates
B

ackgro
u

n
d

Sin
gle-M

aterial
Tw

o
-M

aterial

40



Structure factors for two-material targets
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Structure factors for two-material targets
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Distinguishing new forces from two-material 
structure factors is difficult…
• Tempting to simply subtract solid-only scattering from combined 

target scattering

• This doesn’t work: can only measure scattering probabilities of 
different targets, but there’s interference between amplitudes
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Distinguishing new forces from two-material 
structure factors is difficult… but possible
• Can still obtain noble element scattering distribution through a 

combination of measurements using two different noble gases

Neutrons X-Rays

Xenon Alone

Argon Alone

Solid Alone

Solid + Xenon

Solid + Argon

Neutrons X-Rays

Xenon Alone

Argon Alone

Solid Alone

Solid + Xenon

Solid + Argon

2x Scatter Len.

2x Atomic Form 
Factor

1x Struct. Fact.,
2x Phase
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Projected sensitivity: two-material targets
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Astrophysical constraints on new forces

• New scalars could radiate from stars, increasing their cooling rates

• Relevant for masses

• Model-dependent:
• B-coupled scalars

• (B-L)-coupled scalars

• Extra dimensions

• Etc.
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Projected sensitivity: summary
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Backup2 Slides
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Multiple scattering: the fully coherent peak
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Multiple scattering: upper bound

• Can divide scattering from invisibly small angles into two regimes:
• Almost-visible angles that can be predicted from X-ray measurements

• Very small angles where scattering is very common but rarely adds up to a 
significant angle

• Approximate probability of the latter:
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Interactions at the solid-gas surface

• Magnetic moments of solid surface atoms can distort noble atoms’ 
electron orbitals

• A magnetic field gradient should thus change the scattering length by

• The average change in the scattering length is then
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Fiducial neutron beam parameters

• Flux: 108 cm-2 s-1

• Target area: 10 cm2

• Integrated over 28 hours: 1014 incident neutrons

• 10% of neutrons scattered

• Neutron wavelength: 0.6 nm

• Minimum observed angle: 3 mrad
• Minimum observed momentum transfer: (30 nm)-1
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Systematic errors

• Nuclear force momentum-dependence:

• Electric polarizability:

• Also: multiple scattering, atomic interactions, thermal effects, 
structure degradation, temperature/pressure drift, etc.
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Pores and grains are largely equivalent

• Coherent scattering from a collection of grains is equal to coherent 
scattering from everything except those grains

• Negligible coherent scattering from isotropic targets, so
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Two-material separation of contributions: a 
rough estimate
• Can write full two-material scattering distribution as

• As a conservative approximation, assume we predict the gas-only 
part; this leaves us with

• Then we have
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Projected sensitivity: other solid options
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New scalars can mediate three macroscopic 
forces
• Two possible fermion vertices:

• Three forces, depending on whether zero, one, or two 
scalar/pseudoscalar vertices are included:

Discussed in this talk

57



The solution: X-ray scattering

• Can perform the same measurements with X-rays

• X-ray scattering distributions will be proportional to the same 
structure factor
• Structure factors are a property of geometry alone

• Then look at

or

Predictable(?)Measurable
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Distinguishing new forces from two-material 
structure factors is difficult… but possible
• Can still obtain noble element scattering distribution through a 

combination of measurements using two different noble gases

• Can show this by comparing number of possible measurements with 
number of degrees of freedom
• Important to separate degrees of freedom per bin (e.g. structure factors) from 

degrees of freedom that are universal (e.g. a new force coupling)
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Possible measurements with two materials

• 4 measurements from mixed targets:
• Neutrons and X-rays, with each of two noble gases

• 2 measurements from solids alone:
• Neutrons and X-rays

• 2 measurements from gases alone:
• Only X-rays; avoiding this measurement with neutrons is the original goal

8 total constraints
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Degrees of freedom per bin for two materials

• 1 phase sum for the gas region:

• 2 atomic form factors for the noble elements

• 4 components of the solid scattering lengths
• Real and imaginary parts, for neutrons and X-rays

• All other parameters (scattering lengths, new force mass, etc.) are not 
per-bin so they can be extracted from the “extra” measurement

7 d.o.f./bin
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Carbon nanotube arrays/forests

≥ 1 mm length

15 nm diameter



Finite target depth effects
• A given coherent slice is effectively flat (to within    ) over depths of 

no more than



Want to measure



Measurable 
using X-rays



Angle-independent; 
combine to give one 
fit parameter



Too small to matter



Zero if all 
electrons paired



Likely not an issue; 
can be computed if 
necessary



(Relatively) recent 
limits using neutron 
scattering from xenon

Potential reach of 
this work’s proposal

Y. Kamiya et al., PRL 
114, 161101 (2015)

Constraints from 
stellar cooling

Existing limits on new forces

70
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