Baryogenesis in Mirror Twin Higgs

Linda Yuan
University of Toronto
with Gonzalo Alonso Alvarez, David Curtin, Andrija Rasovic

May 16, 2023

Motivation

- Hierarchy problem, no SUSY found at LHC.
- Mirror Twin Higgs (MTH) evades LHC bounds through a color neutral top partner. A hidden sector is generated through Z_{2} symmetry. ${ }^{1}$
- Asymmetric reheating mechanism ensures that $\Delta N_{\text {eff }}$ bounds are satisfied. ${ }^{2}$
- Baryogenesis in MTH: Z_{2} symmetry implies twin baryogenesis.
- Atomic Dark Matter (ADM) has interesting astrophysical implications. ${ }^{34}$
- Main question: what does SM baryogenesis imply about mirror sector baryogenesis, and hence atomic dark matter content of universe?
${ }^{1}$ Z. Chacko, H.-S. Goh, and R. Harnik, (2006) arXiv: 0506256
${ }^{2}$ Z. Chacko, N. Craig, P. J. Fox, and R. Harnik (2017) arXiv: 1611.07975
${ }^{3}$ A. Ghalsasi and M. McQuinn (2018) arXiv: 1712.04779
${ }^{4}$ J. Fan, A. Katz, L. Randall, and M. Reece (2013) arXiv: 1303.1521

Mirror Twin Higgs Review

- The hidden sector (denoted B) is a mirror copy of the SM sector (denoted A).

$$
S U(3)_{A} \times S U(2)_{A} \times U(1)_{A} \stackrel{Z_{2}}{\longleftrightarrow} S U(3)_{B} \times S U(2)_{B} \times U(1)_{B}
$$

- Z_{2} symmetry ensures cancellation of quadratic divergences.
- Twin vev higher than $S M$ vev $f>v, H_{B}$ heavier than H_{A}.
- $3<f / v<10$ satisfies Higgs coupling constraints and avoids sub-percent tuning.
- $\Delta N_{\text {eff }} \approx 6 \rightarrow$ need asymmetric reheating or fraternal twin Higgs (hard Z_{2} breaking to remove light degrees of freedom) ${ }^{5}$

Figure: G. Burdman et al. (2015) arXiv:1411.3310

[^0]
$\nu \mathrm{MTH}$

- Introduces right-handed neutrinos N_{A} and N_{B}
- Generates active neutrino mass $m_{\nu}=\frac{y^{2} v^{2}}{m_{N}^{2}}$ in both sectors
- N_{1} is a long-lived mass eigenstate that freezes out relavistically and leads to an early period of matter domination, decays after two sectors decouple at a few GeV to reheat A more than B
- Branching ratio into B sector $\epsilon=\left(\frac{v}{f}\right)^{2}$ if all decays are three-body

Asymmetric Reheating (Preliminary)

$$
-\rho_{A}-\rho_{B}-\rho_{N}
$$

$\rho_{A,} \rho_{B}$ and ρ_{N} vs a, $T_{A, R}=0.01, m_{N}=600$

Energy density history for one-generation reheating.

$\Delta N_{\text {eff }}$ contours for $\mathrm{f} / \mathrm{v}=5$ in the parameter space of reheaton mass and reheating temperature.

- Interesting region $100 \mathrm{GeV}<m_{N}<400 \mathrm{GeV}: \epsilon \ll 0.1$ due to additional two-body vs three-body decay (not discussed here but ask me for details).
- $m_{N}>\mathrm{GeV}$ so will have to generate $m_{\nu} \ll \mathrm{eV}$ for the lightest active neutrino.

Baryogenesis in $\nu \mathrm{MTH}$

- Main idea: N decays to generate baryon number violation (similar to leptogenesis and WIMP baryogenesis).
- The reheaton may or may not be the generaton.
- The generaton has to be coupled to quarks and a colored scalar ϕ near $m_{\text {gen }}$.
- $m_{\text {gen }}>m_{\phi}>500 \mathrm{GeV}$ from LHC bound for colored scalar. ${ }^{6}$

[^1]
Model

- Introduce following interactions in the Lagrangian

$$
\begin{gathered}
\mathcal{L} \supset-y_{A} \tilde{H}_{A} \bar{L}_{A} N_{A}-\lambda_{A} \bar{N}_{A} \phi_{A} U_{A}-\lambda_{A}^{\prime} D_{A} D_{A} \phi_{A}^{\dagger} \\
-y_{B} \tilde{H}_{B} \bar{L}_{B} N_{B}-\lambda_{B} \bar{N}_{B} \phi_{B} U_{B}-\lambda_{B}^{\prime} D_{B} D_{B} \phi_{B}^{\dagger}
\end{gathered}
$$

- We add particle content

Multiplet	$S U(3)_{A}$	$S U(2)_{A}$	$U(1)_{A}$	$S U(3)_{B}$	$S U(2)$	$U(1)_{B}$
ϕ_{A}	3	1	$-2 / 3$	1	1	0
ϕ_{B}	1	1	0	3	1	$-2 / 3$
N_{A}	1	1	0	1	1	0
N_{B}	1	1	0	1	1	0

- Mass eigenstates and eigenvalues

$$
N=\frac{1}{\sqrt{2}}\left(N_{A} \pm N_{B}\right), M=m_{N} \pm m_{A B}
$$

Cases we study

CASE 1:reheaton $=$ generaton $=N_{1}$

- N_{2} interferes, need $m_{N_{2}}<=m_{N_{1}}$
- If $m_{\phi_{A}}>m_{\phi_{B}}$, SM baryogenesis suppresed unless $m_{N_{1}} \sim m_{N_{2}}$ (further study ongoing for the resonant baryonesis limit)
- If $m_{\phi_{A}}<m_{N_{1}}<m_{\phi_{B}}$, SM baryogenesis unsuppressed, twin baryogenesis suppressed
- If $m_{\phi_{A}}, m_{\phi_{B}}<m_{N_{1}}$, both unsuppressed.

Cases we study

CASE 2: reheaton \neq generaton

- The generaton N_{1} and the colored scalar ϕ need to be heavier than 500 GeV , but now N_{1} generates eV neutrino, so coupling $y=\frac{\sqrt{m_{\nu} m_{N}}}{V}$ is large enough for early out of equilibrium decay, leaving the reheating process undisturbed.
- The reheaton N_{2} can be arbitrary mass. For $m_{N}>\mathrm{GeV}$, we get $m_{\nu} \ll \mathrm{eV}$.
- If $m_{N_{2}} \sim 100 \mathrm{GeV}$, we can now have $\epsilon \ll 0.1$.
- Further studies in progress for this case.

Preliminary Results

- SM baryogenesis fixes coupling combinations.
- We can predict the ADM density:

Figure: ADM prediction in the case of reheaton=generaton.

Conclusion

- MTH solves the hierarchy problem without being constrained by LHC bounds.
- MTH generates a hidden sector through a Z2 symmetry. If we assume the hidden sector to be stable, it leads to nontrivial cosmology violation.
- Asymmetric reheating fixes the problem of cosmology violation and gives active neutrino masses via right-handed neutrinos.
- Right-handed neutrino decay can generate baryon asymmetry in both SM and twin sectors, naturally set $\Omega_{A D M} / \Omega_{D M} \sim 10^{-3}-10^{-1}$.
- Baryogenesis might re-introduce colored state close to collider limit (except for the case of resonant baryogenesis). Is our baryogenesis picture completely general?
- Motivates ADM searches in cosmology and astrophysics:

Roy, S. et al. (2023) arx:2304.09878

S. Bansal et al. (2012) arx:2212.02487

[^0]: ${ }^{5}$ N. Craig, A. Katz, M. Strassler, and R. Sundrum (2015) arXiv: 1501.05310

[^1]: ${ }^{6}$ except for the case of resonant baryogenesis

