

Baryogenesis in Mirror Twin Higgs

Linda Yuan

University of Toronto with Gonzalo Alonso Alvarez, David Curtin, Andrija Rasovic

May 16, 2023

Motivation

Hierarchy problem, no SUSY found at LHC.

Mirror Twin Higgs (MTH) evades LHC bounds through a color neutral top partner. A hidden sector is generated through \tilde{S}_2 symmetry.¹

Asymmetric reheating mechanism ensures that $-J_{
m eff}$ bounds are satisfied.²

Baryogenesis in MTH: \tilde{S}_2 symmetry implies twin baryogenesis.

Atomic Dark Matter (ADM) has interesting astrophysical implications.³⁴

Main question: what does SM baryogenesis imply about mirror sector baryogenesis, and hence atomic dark matter content of universe?

¹Ši; P-<Vb/s>OiQtiKbP>-^@piO-q^\$Vvf|OEEvg-qt\$f=OECby|Iv ²Ši; P-<Vb>]i; q-\$L>diTiGbt>-^@piO-q^\$Vvf|OEcug-qt\$f=cvcciOE_ul ³, iKP-Ys-sS-^@[i[

 ³, iKP-Ys-sS-^@[i[
 <</td>
 -?% f|OECbg-qt\$f=cuc|iOEluu_

 ⁴TiG-^>, iV-z<>Xip-^@Ys-^@[ipCC<Cf|OE{g-qt\$f=c{OEicl|c</td>
 <</td>
 >

Mirror Twin Higgs Review

The hidden sector (denoted B) is a mirror copy of the SM sector (denoted A).

$$r$$
 (3), r (2), r (1), r (3), r (2), r (1), r (3), r (2), r (1),

 \check{S}_2 symmetry ensures cancellation of quadratic divergences.

Twin vev higher than SM vev H > f, O_3 heavier than O_i .

3 < H = f < 10 satisfies Higgs coupling constraints and avoids sub-percent tuning.

 $J_{\rm eff}$ 6 \rightarrow need asymmetric reheating or fraternal twin Higgs (hard \tilde{S}_2 breaking to remove light degrees of freedom)⁵

GSL~qC=Ki 3~q@\ - ^ Cz - Yi f| CEl g - qt Sf=€Jcci{{cŒ

Jh >

A M i`Q / m + 2 b `B;?i@?LM / 2M//LM 2 m i`B M Q b

:2M2`i2b +iBp2M2Km=i`∯∰MBQMK#bQbi?b2+iQ`b

L_RBb HQM;@HBp2/K bb 2B;2Mbi i2 i? i 7`22x2b Qmi`2 T2`BQ/Q7 K ii2`/QKBM iBQM-/2+ vb 7i2` irQ b2+iQ`b, KQ`2 i? M "

"` M+?BM; ` iBQ BN=tiQ^p/^kbB27+iHQH /2+ vb `2i?`22@#Q/v

bvKK2iB+ 2?2iBM;US2HBKBMVV

A Mi2`2biBM; **2**0B 0KM<R9yyy2o, yR/m2iQ//BiBQM HirQ i?`22@#Q/v/2+ vUMQi/Bb+mbb2/?2`2#mi bF K27Q`/ K_L>:20bQ rBHH? p2i0X; 2N207Q2i?2HB; ?i2bi +iBp2 M21

" ` v Q ; 2 M 2 b **B b** >B M

J BM B/2 , L /2+ vb iQ ;2M2` i2 # `vQM MmK#2` pBQH iB qAJS # `vQ;2M2bBbVX h?2`2?2 iQM K v Q` K v MQi #2 i?2 ;2M2` iQMX h?2 ;2M2` iQM ? b iQ #2 +QmTH2/ iQ [m `M712 KM2MX +QHQ` K;2M→ K > 8yy2o7`QK G>* #QmM/7Q` +℃HQ`2/b+ H`X

J Q / 2 H

AMi`Q/m+27QHHQrBM; BMi2` +iBQMb BM i?2 G ;` M;B I

			JmHiB	TaH(2j)i	al(k)	I(F);	a l(j) _"	al(k)	I(P,R."
q 2	// T	` i B + H 2		j	R	@ k f	j R	R	У
			+ Q₋M i	2 Mati	R	У	j	R	@ k f j
			L	R	R	У	R	R	У
			L	R	R	У	R	R	У

J bb 2B;2Mbi i2b M/2B;2Mp Hm2b

 $L = \frac{P}{K} (L - L_{"}); J = K_{L} - K_{"}$

<ロト < □ ト < □ ト < 三 ト < 三 ト < 三 ト へ ○ へ ○ J v Re-kykj dfRF

Cases we study

CASE 1:reheaton = generaton = j_1

] $_2$ interferes, need λ $_{J_2}$ <= λ $_{J_1}$

If $\lambda_{j} > \lambda_{3}$, SM baryogenesis suppresed unless $\lambda_{J_1} = \lambda_{J_2}$ (further study ongoing for the resonant baryonesis limit)

If $\backslash_{j} < \backslash_{j_1} < \backslash_{3}$, SM baryogenesis unsuppressed, twin baryogenesis suppressed If $\backslash_{j} / \backslash_{3} < \backslash_{j_1}$, both unsuppressed.

Cases we study

CASE 2: reheaton \neq generaton

The generator J_1 and the colored scalar need to be heavier than 500GeV, but now J_1 generates eV neutrino, so coupling $\mathscr{H}_{\mathcal{F}} = \frac{P_{\sqrt{\nu}\sqrt{J_1}}}{f}$ is large enough for early out of equilibrium decay, leaving the reheating process undisturbed. The reheaton J_2 can be arbitrary mass. For $\Lambda_J > KC$, we get $\Lambda = C_2$. If $\Lambda_{J_2} = 100KC$, we can now have 0.1. Further studies in progress for this case.

Preliminary Results

SM baryogenesis fixes coupling combinations. We can predict the ADM density:

May 16, 2023

10/11