

Machine Learning for Particle Physics

Sapientia ex machina?

PHENO 2023 Ramon Winterhalder – UC Louvain

Why does Pheno care about ML?

Why does Pheno care about ML?

Pheno cares about machine learning because it can improve data analysis, simulation and modeling, lead to new discoveries, and foster cross-disciplinary collaboration

ChatGPT

Data volume

Large amounts of data

- 1. labeled (Simulation)
- 2. unlabeled (Detector)

ML wants lots of data

Why ML in HEP?

2014

Data volume

Large amounts of data

1. labeled (Simulation)
2. unlabeled (Detector)

ML wants lots of data

Complexity

High-dimensional & highly correlated data structure

ML is expressive and interpretable

1987

2014

Data volume

Large amounts of data

1. labeled (Simulation) 2. unlabeled (Detector)

ML wants lots of data

Signal detection

Rare and elusive signals among large backgrounds

Complexity

High-dimensional & highly correlated data structure

ML is expressive and interpretable

ML has high accuracy and sensitivity

2014

Data volume

Large amounts of data

1. labeled (Simulation) 2. unlabeled (Detector)

ML wants lots of data

Signal detection

Rare and elusive signals among large backgrounds

Complexity

High-dimensional & highly correlated data structure

ML is expressive and interpretable

3

ML has high accuracy and sensitivity

Computing Budget

Simulation & analysis is computationally expensive

ML is fast

2014

Data volume

Large amounts of data

1. labeled (Simulation) 2. unlabeled (Detector)

ML wants lots of data

Signal detection

Rare and elusive signals among large backgrounds

Complexity

High-dimensional & highly correlated data structure

ML is expressive and interpretable

ML has high accuracy and sensitivity

Increasing interest > 150 paper/year Future of HEP?

ML is fun!

5

Computing Budget

Simulation & analysis is computationally expensive

ML is fast

2014

LHC analysis (oversimplified)

LHC analysis + ML

egression 1099] PDF 02653] ssion 4] Madigan SIMUnet

Deep generative models

Deep generative models

Generative Adversarial Network

Variational Auto-Encoder

New kids in town

Diffusion Probabilistic Model

Generative Pretrained Transformer

ML aided simulation chain

ML aided simulation chain

Inverse

Analyses & Unfolding **2**

ML improved simulations

ML improved simulations

BDT [1707.00028, ...], NN [1810.11509, 2009.07819, ...] NF [2001.05486, 2001.05478, 2001.10028, 2005.12719, 2112.09145, 2212.06172, ...]

MADNIS — Neural importance sampling

Flat sampling

Importance Sampling

Multi-channel

→ Details in talk by T. Heimel

End-to-end generation

VAE [2101.08944, ...], NF [2011.13445, 2110.13632, ...] GAN [1901.00875, 1901.05282, 1903.02433,1907.03764, 1912.02748, 2001.11103, ...]

Precision generation

Z + jets production:

pp → Z + {1, 2, 3} jets → $\mu^+\mu^-$ + {1, 2, 3} jets

Parametrize with NF

Precision generation

Z + jets production:

pp → Z + {1, 2, 3} jets → $\mu^+\mu^-$ + {1, 2, 3} jets

Parametrize with NF

Precision generation

Berkeley/Louvain [2305.xxxx]

LASER gives unweighted events

Additional classifier improves precision
DCTRGAN [1907.08209, 2009.03796], LASER [2106.00792]

Berkeley/Louvain + HD/Rutgers --->

New kids in town

Pushing limits in the precision era?

Credits to Nathan Huetsch, Sofia Schweitzer, Peter Sorrenson and Jonas Spinner

Denoising diffusion probabilistic model

Diffusion probabilistic model

Parametrize with **DDPM**

- **Discrete** diffusion time steps **T**
- Invert each step iteratively ullet
- Requires T network evaluations Θ
- State-of-the-art image generation (+)

Conditional flow matching

Diffusion probabilistic model

CFM

 $v_{ heta}$

Parametrize with **CFM**

- **Continuous** time evolution
- Solve ODE numerically

$$\frac{\mathrm{d}}{\mathrm{d}t}x(t) = v_{\theta}(x(t), t)$$

- No fine tuning of finite time steps (+)
- Solving ODE numerically is slow Θ and requires multiple network evals

Generative (pre-trained) transformer

Parametrize with AT

- Autoregressive sampling
- Self-attention for complicated correlations and combinatorics
- Arbitrary input length L
- Requires L network evaluations

New kids in town — Future?

DDPM

Jet separation —

CFM

New kids in town — Future?

Invariant lepton mass —

DDPM

CFM

New kids in town — Future?

Invariant lepton mass —

DDPM

CFM

→ Soon to be published [2305.xxxx]

Inverting the simulation chain

Inverse

Analyses & Unfolding **2**

Inverting the simulation chain

Classifier based aproach

OmniFold [1911.09107], Profiled Unfolding [2302.05390]

Density based approach

FCGAN [1912.00477], cINN [2006.06685], IcINN [2212.08674], OTUS [2101.08944]

→ More in talk by R. Barman

Inverting the simulation chain

Historically → Tevatron

Top mass: D0 (98', 04'), CDF 06', Fiedler et al. [1003.1316] Single-top: Review [1710.10699]

Inference with normalizing flows

MEM master formula:

$$p(x_{\rm reco} \mid \alpha) = dx_{\rm has}$$

Likelihood intractable \rightarrow parametrize with NF

Reconstructed momenta

 $x_{\rm reco}$

ard $p(x_{hard} | \alpha) p(x_{reco} | x_{hard})$

Inference with normalizing flows

MEM master formula:

$$p(x_{\rm reco} \mid \alpha) = \int dx_{\rm ha}$$

Likelihood intractable \rightarrow parametrize with NF Reconstructed momenta

 $x_{\rm reco}$

 $p_{\text{ard}} p(x_{\text{hard}} | \alpha) p(x_{\text{reco}} | x_{\text{hard}})$

In practice → perform integral numerically

parametrize with additional **NF** Talk by T. Heimel

Heidelberg/Louvain [2210.00019, 23XX.xxxx]

tHj production:

 $pp \rightarrow tHj$ $\rightarrow (bW)(\gamma\gamma)j$

- kinematics sensitive (+)

Result from MEM

tHj production:

 $pp \rightarrow tHj$ $\rightarrow (bW) (\gamma\gamma) j$

 $\mathscr{L}_{t\bar{t}H} = -\frac{y_t}{\sqrt{2}} \left[\cos \alpha \, \bar{t}t + \frac{2}{3} i \sin \alpha \, \bar{t}\gamma_5 t \right] H$

Anomalous coupling with CP-angle α

Result from MEM

tHj production:

 $pp \rightarrow tHj$ \rightarrow (bW) ($\gamma\gamma$) j

 $\mathscr{L}_{t\bar{t}H} = -\frac{y_t}{\sqrt{2}} \left[\cos \alpha \, \bar{t}t + \frac{2}{3} i \sin \alpha \, \bar{t}\gamma_5 t \right] H$ Anomalous coupling

with CP-angle α

Uncertainties from training of neural network? → Bayesian neural networks

Summary

- DGMs provide fast and precise simulations ullet
- Flows (+ Transformers) provide statistically ulletwell-defined likelihoods for inference
- Account for **uncertainties** with ullet**Bayesian neural networks**

Summary and Outlook

Outlook

- Full integration of DGMs into standard tools
- Make everything run on the GPU and \bullet differentiable (MadJax - Heinrich et al. [2203.00057])

Sci Post

SciPost Phys. 14, 079 (2023)

Machine learning and LHC event generation

Anja Butter^{1,2}, Tilman Plehn¹, Steffen Schumann³, Simon Badger⁴, Sascha Caron^{5,6} Kyle Cranmer^{7,8}, Francesco Armando Di Bello⁹, Etienne Dreyer¹⁰, Stefano Forte¹¹, Sanmay Ganguly¹², Dorival Gonçalves¹³, Eilam Gross¹⁰, Theo Heimel¹, Gudrun Heinrich¹⁴, Lukas Heinrich¹⁵, Alexander Held¹⁶, Stefan Höche¹⁷, Jessica N. Howard¹⁸, Philip Ilten¹⁹, Joshua Isaacson¹⁷, Timo Janßen³, Stephen Jones²⁰, Marumi Kado^{9,21}, Michael Kagan²², Gregor Kasieczka²³, Felix Kling²⁴, Sabine Kraml²⁵, Claudius Krause²⁶, Frank Krauss²⁰, Kevin Kröninger²⁷, Rahool Kumar Barman¹³, Michel Luchmann¹, Vitaly Magerya¹⁴, Daniel Maitre²⁰, Bogdan Malaescu², Fabio Maltoni^{28,29}, Till Martini³⁰, Olivier Mattelaer²⁸, Benjamin Nachman^{31,32}, Sebastian Pitz¹, Juan Rojo^{6,33}, Matthew Schwartz³⁴, David Shih²⁵, Frank Siegert³⁵, Roy Stegeman¹¹, Bob Stienen⁵, Jesse Thaler³⁶, Rob Verheyen³⁷, Daniel Whiteson¹⁸, Ramon Winterhalder²⁸, and Jure Zupan¹⁹

Abstract

First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation. This review illustrates a wide range of applications of modern machine learning to event generation and simulation-based inference, including conceptional developments driven by the specific requirements of particle physics. New ideas and tools developed at the interface of particle physics and machine learning will improve the speed and precision of forward simulations, handle the complexity of collision data, and enhance inference as an inverse simulation problem.

collision data, and enhance inference as an inverse simulation problem. will improve the speed and precision of forward simulations, handle the complexity of

Summary and Outlook

Outlook

- Full integration of DGMs into standard tools
- Make everything run on the GPU and \bullet differentiable (MadJax - Heinrich et al. [2203.00057])
- More details in our **Snowmass report**
- Stay tuned for many other **ML4HEP** applications

HEPML

