Collider Signatures of Near-Continuum Dark Matter

Steven Ferrante, Maxim Perelstein, (Cornell U.) Seung J. Lee (Korea U.)

(Work In Progress)

- Planck brane @ y = 0
- SM brane @ y = R
- Coupled system of graviton and scalar leads to singularity @ $y = y_s$ (" soft-wall")

Quiros et al., 0907.5361 Csaki, Perelstein, et al., 2105.07035, 2105.14023

- Planck brane @ y = 0
- SM brane @ y = R
- Coupled system of graviton and scalar leads to singularity @ y = y_s (" soft-wall")
- ullet Dark Matter field -- $oldsymbol{\Phi} = \sum_n \phi_n(x) f_n(y)$
- ullet Φ is charged under a discrete \mathbb{Z}_2 symmetry
- ullet Talks to the SM via Z-Portal ${\cal L}\supset Z^\mu\Phi^\dagger\partial_\mu\Phi$

Quiros et al., 0907.5361 Csaki, Perelstein, et al., 2105.07035, 2105.14023

- Planck brane @ y = 0
- SM brane @ y = R
- Coupled system of graviton and scalar leads to singularity @ $y = y_s$ ("soft-wall")
- Dark Matter field -- $\Phi = \sum_n \phi_n(x) f_n(y)$
- Φ is charged under a discrete \mathbb{Z}_2 symmetry
- ullet Talks to the SM via Z-Portal ${\cal L}\supset Z^\mu\Phi^\dagger\partial_\mu\Phi$
- Spectrum of Φ is found by solving

$$-f_n^{\prime\prime}+V(z)f_n=m_n^2f_n$$

- Planck brane @ y = 0
- SM brane @ y = R
- Coupled system of graviton and scalar leads to singularity @ $y = y_s$ (" soft-wall")
- ullet Dark Matter field -- $oldsymbol{\Phi} = \sum_n \phi_n(x) f_n(y)$
- ullet Φ is charged under a discrete \mathbb{Z}_2 symmetry
- ullet Talks to the SM via Z-Portal ${\cal L}\supset Z^\mu\Phi^\dagger\partial_\mu\Phi$
- Spectrum of Φ is found by solving
- Result: Φ gets a gapped continuous KK spectrum!
- Goal: What is the pheno for continuous spectra?

Quiros et al., 0907.5361

Csaki, Perelstein, et al., 2105.07035, 2105.14023

Singularity must be resolved somehow

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane @ $y = y_{IR}$

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane @ $y = y_{IR}$
- V(y) now resembles infinite well from QM

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane @ $y = y_{IR}$
- V(y) now resembles infinite well from QM
- Makes the mass spectrum of Φ discrete!

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane @ $y = y_{IR}$
- V(y) now resembles infinite well from QM
- Makes the mass spectrum of Φ discrete!
- ullet Z-portal & \mathbb{Z}_2 allows for "cascade decay"
- DM states become increasingly light & stable
- ullet Requires $\Gamma_Z > \Gamma_q$ to be "**visible**"

Cannot use MadGraph! Use Vegas as our MC sampler

- Cannot use MadGraph!
- Use Vegas as our MC sampler

- Cannot use MadGraph!
- Use Vegas as our MC sampler

Non-Observables

• Φ_n masses at each step

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

(backup)

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

Observables

Multiplicities

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Missing Energy

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Missing Energy
- Spherocity

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Missing Energy
- Spherocity
- Displaced Vertices
- Fermion Angles
- etc ...

(backup)

ullet If $\Gamma_Z < \Gamma_q$, DM decays are dominated by gravitons in the bulk

- ullet If $\Gamma_Z < \Gamma_g$, DM decays are dominated by gravitons in the bulk
- Signal is mostly invisible, so consider γ + MET (initial state radiation)

- ullet If $\Gamma_Z < \Gamma_q$, DM decays are dominated by gravitons in the bulk
- Signal is mostly invisible, so consider γ + MET (initial state radiation)
- Only observables are the photon energy & angle

- NWA breaks down!
- Assume the signal is invisible

- NWA breaks down!
- Assume the signal is invisible → ISR signal

- NWA breaks down!
- Assume the signal is invisible → ISR signal
- But the KK modes aren't asymptotic states!

- NWA breaks down!
- Assume the signal is invisible → ISR signal
- But the KK modes aren't asymptotic states!
- Need to use the <u>Optical Theorem</u>

- NWA breaks down!
- Assume the signal is invisible → ISR signal
- But the KK modes aren't asymptotic states!
- Need to use the Optical Theorem ... not clear if it works for continuum propagators
- Should still be equivalent to the Feynman diagram treatment (as in the Invisible case)

Conclusion

- Near-Continuum models can rise to different types of interesting phenomenology
- Cascade Decay in the visible case of Near-Continuum
- γ + MET signal in the invisible case of Near-Continuum or the full limit

Conclusion

- Near-Continuum models can rise to different types of interesting phenomenology
- Cascade Decay in the visible case of Near-Continuum
- γ + MET signal in the invisible case of Near-Continuum or the full limit

Outlook

- LHC Simulations
- Comparison to backgrounds
- Can consider other continuum models
- Strongly coupled dual description?

Thanks for (fine)tuning in

Backup

Near-Continuum KK Spectrum -- Narrow Width & **Visible**

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step

Near-Continuum KK Spectrum -- Narrow Width / & Visible

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

Non-Observables

- Φ_n masses at each step
- Φ velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles

Near-Continuum KK Spectrum -- Narrow Width & **Visible**

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity

Near-Continuum KK Spectrum -- Narrow Width / & Visible

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices

Near-Continuum KK Spectrum -- Narrow Width & **Visible**

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices

Near-Continuum KK Spectrum -- Narrow Width & **Visible**

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices
- DeltaR

Near-Continuum KK Spectrum -- Narrow Width / & Visible

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices
- DeltaR
- # jets

Near-Continuum KK Spectrum -- Narrow Width & **Visible**

Non-Observables

- Φ_n masses at each step
- Φ_n velocities at each step
- Invariant mass of each fermion pair

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices
- DeltaR
- # jets
- Thrust

ullet Assume NWA holds, & consider the limit $z_{
m max} o \infty$... then $\Delta m o 0$

ullet Assume NWA holds, & consider the limit $\,z_{
m max}^{}
ightarrow \infty\,\, ...\,$ then $\,\Delta m
ightarrow 0$

ullet Assume NWA holds, & consider the limit $z_{
m max} o \infty$... then $\Delta m o 0$

ullet Assume NWA holds, & consider the limit $\,z_{
m max}^{} o \infty\,$... then $\,\Delta m o 0\,$

- ullet Assume NWA holds, & consider the limit $z_{
 m max} o \infty$... then $\Delta m o 0$
- ullet By the time NWA breaks, $\Gamma_g > \Gamma_Z imes$ Invisible

Alternate explanation of $\,\Gamma_Z ightarrow 0$

$$egin{aligned} <\Phi(x,0)\Phi(x,0)> &=& \sum_{n,m} f_n(0)f_m(0) < \Phi_n(x)\Phi_m(x)> \ &=& \sum_n |f_n(0)|^2rac{i}{p^2-m_n^2} \ &=& \int dm^2 \left(\limrac{|f_n(0)|^2}{\Delta m^2}
ight)rac{i}{p^2-m^2} \ & o
ho(m^2) \end{aligned}$$