Collider Signatures of Near-Continuum Dark Matter

Steven Ferrante, Maxim Perelstein, (Cornell U.) Seung J. Lee (Korea U.)
(Work In Progress)

Continuum DM

- Planck brane @y=0
- SM brane @y=R
- Coupled system of graviton and scalar leads to singularity @y=ys ("soft-wall")

Continuum DM

- Planck brane @y=0
- SM brane @y=R
- Coupled system of graviton and scalar leads to singularity @y=ys. ("soft-wall")
- Dark Matter field -- $\Phi=\sum_{n} \phi_{n}(x) f_{n}(y)$
- Φ is charged under a discrete \mathbb{Z}_{2} symmetry
- Talks to the SM via Z-Portal $\mathcal{L} \supset Z^{\mu} \Phi^{\dagger} \partial_{\mu} \Phi$

Quiros et al., 0907.5361

Continuum DM

- Planck brane @y=0
- SM brane @y=R
- Coupled system of graviton and scalar leads to singularity @y=ys ("soft-wall")
- Dark Matter field -- $\Phi=\sum_{n} \phi_{n}(x) f_{n}(y)$
- Φ is charged under a discrete \mathbb{Z}_{2} symmetry
- Talks to the SM via Z-Portal $\mathcal{L} \supset Z^{\mu} \Phi^{\dagger} \partial_{\mu} \Phi$
- Spectrum of Φ is found by solving

$$
-f_{n}^{\prime \prime}+V(z) f_{n}=m_{n}^{2} f_{n}
$$

Continuum DM

- Planck brane @y=0
- SM brane @y=R
- Coupled system of graviton and scalar leads to singularity @y=ys ("soft-wall")
- Dark Matter field -- $\Phi=\sum_{n} \phi_{n}(x) f_{n}(y)$
- Φ is charged under a discrete \mathbb{Z}_{2} symmetry
- Talks to the SM via Z-Portal $\mathcal{L} \supset Z^{\mu} \Phi^{\dagger} \partial_{\mu} \Phi$
- Spectrum of Φ is found by solving
- Result: Φ gets a gapped continuous KK spectrum !
- Goal: What is the pheno for continuous spectra?

Quiros et al., 0907.5361

Near-Continuum DM

- Singularity must be resolved somehow

Near-Continuum DM

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane $@ y=y_{\mathrm{IR}}$

Near-Continuum DM

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane $@ y=y_{\mathrm{IR}}$

- $\mathrm{V}(\mathrm{y})$ now resembles infinite well from QM

Near-Continuum DM

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane $@ y=y_{\mathrm{IR}}$
- $\mathrm{V}(\mathrm{y})$ now resembles infinite well from QM
- Makes the mass spectrum of Φ discrete!

Near-Continuum DM

- Singularity must be resolved somehow
- Can crudely model QG effects with "IR regulator brane"
- Broadens interest to a family of models, parameterized by a brane $@ y=y_{\mathrm{IR}}$
- $\mathrm{V}(\mathrm{y})$ now resembles infinite well from QM
- Makes the mass spectrum of Φ discrete!
- Z-portal \& \mathbb{Z}_{2} allows for "cascade decay"

- DM states become increasingly light \& stable
- Requires $\Gamma_{Z}>\Gamma_{g}$ to be "visible"

Near-Continuum Phenomenology -- Visible Cascade

- Cannot use MadGraph!
- Use Vegas as our MC sampler

Near-Continuum Phenomenology -- Visible Cascade

- Cannot use MadGraph!
- Use Vegas as our MC sampler

Benchmark Point:
e+e- Collider $V_{s}=500 \mathrm{GeV}$ $\mu_{0}=100 \mathrm{GeV}$
$g_{\text {eff }}=0.0074$

Near-Continuum Phenomenology -- Visible Cascade

- Cannot use MadGraph!
- Use Vegas as our MC sampler

Benchmark Point:

 e+e- Collider $V_{\mathrm{s}}=500 \mathrm{GeV}$ $\mu_{0}=100 \mathrm{GeV}$$g_{\text {eff }}=0.0074$

preliminary

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

(backup)

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities

preliminary

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies

preliminary
7

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Missing Energy

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Missing Energy
- Spherocity

preliminary

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities

(backup)

- Fermion Energies
- Missing Energy
- Spherocity
- Displaced Vertices
- Fermion Angles
- etc ...

Near-Continuum Phenomenology -- Invisible Cascade

- If $\Gamma_{Z}<\Gamma_{g}$, DM decays are dominated by gravitons in the bulk

Near-Continuum Phenomenology -- |lnvisible Cascade

- If $\Gamma_{Z}<\Gamma_{g}$, DM decays are dominated by gravitons in the bulk
- Signal is mostly invisible, so consider $\gamma+$ MET (initial state radiation)

Near-Continuum Phenomenology -- Invisible Cascade

- If $\Gamma_{Z}<\Gamma_{g}$, DM decays are dominated by gravitons in the bulk
- Signal is mostly invisible, so consider $\gamma+$ MET (initial state radiation)
- Only observables are the photon energy \& angle

Back to Continuum DM: take the Continuum Limit $\Delta m \rightarrow 0$

- NWA breaks down!
- Assume the signal is invisible

Back to Continuum DM: take the Continuum Limit $\Delta m \rightarrow 0$

- NWA breaks down!
- Assume the signal is invisible \rightarrow ISR signal

Back to Continuum DM: take the Continuum Limit $\Delta m \rightarrow 0$

- NWA breaks down!
- Assume the signal is invisible \rightarrow ISR signal
- But the KK modes aren't asymptotic states!

Back to Continuum DM: take the Continuum Limit $\Delta m \rightarrow 0$

- NWA breaks down!
- Assume the signal is invisible \rightarrow ISR signal
- But the KK modes aren't asymptotic states!
- Need to use the Optical Theorem

Back to Continuum DM: take the Continuum Limit $\Delta m \rightarrow 0$

- NWA breaks down!
- Assume the signal is invisible \rightarrow ISR signal
- But the KK modes aren't asymptotic states!
- Need to use the Optical Theorem ... not clear if it works for continuum propagators
- Should still be equivalent to the Feynman diagram treatment

> (as in the Invisible case)

Im

> *preliminary*

Conclusion

- Near-Continuum models can rise to different types of interesting phenomenology
- Cascade Decay in the visible case of Near-Continuum
- $\quad \gamma+$ MET signal in the invisible case of Near-Continuum or the full limit

Conclusion

- Near-Continuum models can rise to different types of interesting phenomenology
- Cascade Decay in the visible case of Near-Continuum
- $\quad \gamma+$ MET signal in the invisible case of Near-Continuum or the full limit

Outlook

- LHC Simulations
- Comparison to backgrounds
- Can consider other continuum models
- Strongly coupled dual description?

Thanks for (fine)tuning in

Backup

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step

preliminary

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

preliminary

Near-Continuum Phenomenology -- Visible Cascade

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices

- DeltaR

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices
- DeltaR

- \# jets

Near-Continuum KK Spectrum -- Narrow Width \checkmark \& Visible

Non-Observables

- Φ_{n} masses at each step
- Φ_{n} velocities at each step
- Invariant mass of each fermion pair

Observables

- Multiplicities
- Fermion Energies
- Fermion Angles
- Missing Energy
- Spherocity
- Displaced Vertices
- DeltaR

- \# jets
- Thrust

Near-Continuum KK Spectrum -- Narrow Width X

- Assume NWA holds, \& consider the limit $z_{\max } \rightarrow \infty \ldots$ then $\Delta m \rightarrow 0$

Near-Continuum KK Spectrum -- Narrow Width X

- Assume NWA holds, \& consider the limit $z_{\max } \rightarrow \infty \ldots$ then $\Delta m \rightarrow 0$

Near-Continuum KK Spectrum -- Narrow Width X

- Assume NWA holds, \& consider the limit $z_{\max } \rightarrow \infty \ldots$ then $\Delta m \rightarrow 0$

Near-Continuum KK Spectrum -- Narrow Width X

- Assume NWA holds, \& consider the limit $z_{\max } \rightarrow \infty \ldots$ then $\Delta m \rightarrow 0$

Near-Continuum KK Spectrum -- Narrow Width X

- Assume NWA holds, \& consider the limit $z_{\max } \rightarrow \infty \ldots$ then $\Delta m \rightarrow 0$
- By the time NWA breaks, $\Gamma_{g}>\Gamma_{Z} \rightarrow$ Invisible

Alternate explanation of $\Gamma_{Z} \rightarrow 0$

$$
\begin{aligned}
<\Phi(x, 0) \Phi(x, 0)> & =\sum_{n, m} f_{n}(0) f_{m}(0)<\Phi_{n}(x) \Phi_{m}(x)> \\
& =\sum_{n}\left|f_{n}(0)\right|^{2} \frac{i}{p^{2}-m_{n}^{2}} \\
& =\int d m^{2} \underbrace{\left(\lim \frac{\left|f_{n}(0)\right|^{2}}{\Delta m^{2}}\right) \frac{i}{p^{2}-m^{2}}}_{\rightarrow \rho\left(m^{2}\right)}
\end{aligned}
$$

