Conveners
BSM XIV
- Saarik Kalia (University of Minnesota)
A new fundamental theory [1] unavoidably predicts supersymmetry, SO(N) grand unification, and a new description of all fundamental scalar bosons. As discussed in our previous papers [2-5] and many recent talks, this last feature in turn unavoidably predicts a dark matter WIMP which is consistent with all experimental and observational constraints, and which should be observable via direct...
We demonstrate the ability of future dark matter experiments to probe beyond the standard model (BSM) effects in neutrino scattering of solar and atmospheric origin in models with heavy scalar and vector mediated interactions. Mapping the effective four-Fermi vertex of a scalar NSI to the well studied model of leptoquarks, we find that near future detectors can probe parameter space beyond the...
We present a minimal UV-complete model for sub-GeV thermal Dark Matter (DM) that primarily interacts with neutrinos and contributes to the generation of neutrino masses and mixings through quantum loop corrections at the one-loop level. In this configuration, DM can solely annihilate into SM neutrinos without affecting the Cosmic Microwave Background anisotropies. We find that the rate of...
Curvatons are light (compared to Hubble during inflation) spectator fields that potentially contribute adiabatic curvature perturbations post-inflation. They can thereby alter CMB observables such as the spectral index $n_s$, the tensor-to-scalar ratio $r$, and the local non-Gaussianity $f_{\rm NL}^{\rm (loc)}$. We systematically explore the observable space of a curvaton with a quadratic...
We present an updated global SMEFT analysis in the Higgs and Electroweak sectors using the SFitter framework. We use a newly implemented marginalization procedure that allows comparison of Wilson coefficient results between profiling and marginalization methods. Marginalization is motivated by better scalability for high-dimensional analyses and provides faster numerical convergence compared...
Various theories beyond the Standard Model predict new, long-lived particles with unique signatures which are difficult to reconstruct and for which estimating the background rates is also a challenge. Signatures from displaced and/or delayed decays anywhere from the inner detector to the muon spectrometer, as well as those of new particles with fractional or multiple values of the charge of...