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Background
• In the context of the High Field Magnets (HFM) programme, 

Nb3Sn conductor activities at CERN include:
• Wire procurement and Rutherford cabling for magnet development:

• Demonstrating a robust technology for 12 T accelerator magnets

• Developing ultimate performance Nb3Sn dipole magnets, both at CERN and in collaborations

• Driving development of Nb3Sn wire and cable towards the challenging performance 
targets of ultimate dipole magnets:
• Non-Cu Jc of 1500 A/mm2 (4.2 K 16 T), expected to require novel approaches (e.g. internal 

oxidation, novel alloying)

• This also requires characterisation and optimisation of a broader range of parameters, e.g.:
• Mechanical and electromechanical characteristics

• Magnetothermal stability

• Supported by collaborations with academia and industry, including:
• Industrial wire development collaborations with KAT, and in partnership with KEK, 

JASTEC and Furukawa
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Introduction
• This presentation reports wire characterisation and cable development 

studies using:
• RRP® wire procured from Bruker OST

• Distributed tin wires developed by KAT

• including analysis of:
• Ic and RRR degradation on Rutherford cabling

• Stability (round and deformed wires)

• Wire design aspects

• taking the HL-LHC RRP® conductors as a baseline for comparison

• Relative to that baseline, wires are:
• Larger in diameter: 1.0 – 1.1 mm

• Lower in copper: 0.9 – 1.0 Cu/non-Cu

• Targeting higher Jc: For RRP®, ‘standard’ Sn stoichiometry
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Nb3Sn Wire Diameter
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Nb3Sn Sub-Element Diameter
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Magnet Applications and Cable Layouts
• ERMC-1 and DEM-1.1 are assigned for use in two HFM magnet collaborations

• ERMC-1 → FalconD (INFN): cos-theta dipole model targeting 12 T bore field

• DEM-1.1 → R2D2 (CEA): graded single-layer racetrack (DEM-1.1 for high field, DEM-0.7 for low field)

• ERMC-1 is also planned for use in CERN R&D coils
• ERMC-1 → eRMC = enhanced Racetrack Model Coil, an established platform in which other 1.0 mm wires have 

previously been tested

• The corresponding cable geometries are summarised below (exact parameters subject to change)

• The FalconD and ERMC cable layouts have also been used for cabling trials to qualify R&D wire

15 December 2022

Type Strands × diameter (mm) Mid-thickness (mm) Pitch (mm) Keystone Core

ERMC 40 × 1.0 1.82 120 None Stainless steel (1.4404, 

14×0.025 mm)FalconD 40 × 1.0 1.800 110-120 0.5 °

R2D2 HF 21 × 1.1 1.965 84 None None

20.85 mm

1.8 mm
Example of cable cross-section in FalconD

layout (optical micrograph)
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Stability
• Several causes of instability:

• Self-field instability
• Dominates at high field

• Depends on Jc and strand diameter

• Driven by uneven distribution of transport current in ramping

• Magnetisation instability 
• Significant at low field for high magnetisation strand

• Depends on Jc and deff

• Designing for stability includes:
• Adiabatic stability: deff below threshold value

• For RRP® wire: filaments merged and barrier partially 
reacted → deff almost fixed from geometry (wire diameter 
and geometrical sub-element size)

• For distributed tin wires: depends on distribution of Nb 
filaments

• Rolling or cabling deformation affects both (sub-element 
aspect ratio, displacement of Nb modules)

• Dynamic stability: increasing RRR → increasing copper 
conductivity
• Combination of design, materials and heat treatment 

optimisation
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Bordini et al., IEEE Trans. Appl Supercond. 22 (3) 4705804

SF Self field

M Magnetisation
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Evaluation of Stability
• Self-field stability assessed here by V-I transport measurements:

• Starting with an applied field of 15 T, and decreasing in small steps

• Multiple V-I measurements performed at each field step
• Average quench current or Ic presented in following plots

• Values are plotted without self-field or temperature corrections

• Maximum current ~2000 A

• Samples measured:
• Round and rolled wires, and extracted strands

• At 4.3 K and 1.9 K

• Only one sample of each type measured to date

• In most cases, samples had previously been measured (i.e. one previous thermal 
cycle):
• Samples tested as pairs: increase in Ic expected, but does not affect relative conclusions

15 December 2022 8Introduction  |



RRP® Wire
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RRP® Wire Characteristics
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HL-LHC HFM

11 T dipole MQXF ERMC-1 DEM-1.1

Diameter (mm) 0.7 0.85 1.0 1.1

Layout 108/127 162/169

ds (µm) 45 54 58 64

Cu/non-Cu 1.15 ± 0.1 1.2 ± 0.1 0.9 ± 0.2

Nb:Sn 3.6 (reduced Sn) 3.4 (standard Sn)

Heat treatment 650 °C 50 h 665 °C 50 h 650 °C 50 h 665 °C 50 h
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RRP® Wire Performance
• For the chosen heat treatments, the 162/169 

wires have:
• Jc higher than target, and significantly higher than 

HL-LHC reference (up to 10 % cf. MQXF, 20 % cf. 
11 T)

• RRR high, >200 rolled on average (comparable to 
MQXF)

• Trends consistent with historical expectations 
from Sn stoichiometry and sub-element size
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Mean non-Cu Jc(B) at 4.3 K (CERN data, no corrections)

RRR 11 T MQXF ERMC-1 DEM-1.1

Round 309 ± 35 345 ± 40 290 ± 33 266 ± 39

15 % rolled 174 ± 29 215 ± 29 206 ± 27 203 ± 36

RRR (mean ± standard deviation)

M. Field et al., IEEE Trans. Appl. Supercond. 24 (3) 6001105 (2014)

HL-LHC 108/127

ERMC-1

12 T 4.2 K 15 T 4.2 K
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Stability of MQXF Wire
• As a baseline reference, 

measurements were performed 
for extracted and virgin HL-LHC 
MQXF strands

• Over the tested range (6–15 T), 
no quenches occurred, and the 
Ic followed the expected field 
dependence both at 4.3 K and 
1.9 K
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Measured Ic(B) for a virgin and an extracted strand from MQXFA cable 

production, with average MQXF virgin wire Ic(B) for comparison
(P43OL1123AE27, originating from spool PO08S00343A01U)
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Stability of ERMC-1: Virgin Wire
• For ERMC-1 wire with the standard 

heat treatment cycle (final step 
650 °C 50 h)
• At 4.3 K, measured currents follow the 

Ic(B) extrapolated from 12–15 T right up 
to the current limit below 9 T
• …but a full transition is measured only at 

11 T and above

• At 1.9 K, quenches occur at currents less 
than the extrapolated Ic below 13 T
• At ~10 T and below, the quench current at 

1.9 K is less than that at 4.3 K

• Quenches not experienced during 
routine acceptance tests (≥ 12 T, 4.3 K)
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Measured Imax(B) for virgin ERMC-1 wire (1.0 mm 162/169) 

after the standard heat treatment (650 °C 50 h), with average 

Ic(B) for comparison
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Stability of ERMC-1: Extracted Strand
• For an ERMC-1 strand extracted from a trial 

cable for FalconD, after the standard heat 
treatment cycle (final step 650 °C 50 h)

• At both temperatures, the Ic shows some 
degradation relative to virgin strand (dashed lines)

• At 4.3 K, the degraded Ic(B) follows the same trend 
as virgin Ic only down to 13 T

• Below 13 T, quenches occur at currents 
significantly below the extrapolated Ic

• At 1.9 K, performance is limited by quenches below 
extrapolated Ic at 14 T and below

• At ~12.5 T and below, the quench current at 1.9 K 
is less than that at 4.3 K

• Extracted strand shows markedly poorer stability 
than virgin ERMC-1, with stability limiting the 
achievable current over the full field range 
expected for applications
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Measured Imax(B) for extracted strand from FalconD trial 

cable after the standard heat treatment (650 °C 50 h). The 

lines show the virgin ERMC-1 wire Ic for comparison.
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Heat Treatment Optimisation (1)
• Optimisation of the final heat treatment step generally seeks a balance 

between Ic(B) and RRR
• For ERMC-1, during production this was already revised from 665 °C 50 h (cf. DEM-

1.1) → 650 °C 50 h to ensure the RRR spec could be met

15 December 2022

Dependence of Bc2 on heat treatment temperature 

comparing 132/169 with standard and reduced Sn
Cooley et al. 2017, IEEE Trans. Appl. Supercond. 27 6000505

15RRP® |

• Considering the very high Ic, potential to further adjust that 
balance in exchange for improved stability and reduced 
cabling degradation

• Both time and temperature are already quite low –
literature suggests:
• Reducing temperature to 640 °C could reduce Bc2 by ~1 T

• For ‘standard Sn’ wire, approach the ‘strain irreversibility 
cliff’ (next slide)

• Little data available for very short heat treatments



Strain Irreversibility Cliff
• ‘Strain irreversibility cliff’ (SIC, N. Cheggour): an abrupt 

reduction in the irreversible strain limit as a function of heat 
treatment temperature
• Cliff temperature dependent on doping (Ti, Ta) and Sn 

stoichiometry

• Heat treatment optimisation must also consider Ic and RRR

• Much broader acceptable range for reduced Sn than standard Sn

• Provisionally associated with δ Cu-Sn

• First tests for standard Sn 162/169 RRP® suggest similar 
behaviour
• See Cheggour et al., Strain investigation of RRP® Nb3Sn wires for 

the Test Facility Dipole Project TFD, presented at ASC 2022, 
27 October 2022
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Dependence of irreversible strain limit and RRR on 

heat treatment temperature for Ti-doped 108/127
Cheggour et al. 2019, Scientific Reports 9 5466

Standard Sn

Reduced Sn
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Heat Treatment Optimisation (2)
• Initial trials have therefore been with reduced duration

• Two heat treatments were performed to assess the effect of 
shorter reaction steps at 650 °C:
• One heat treatment of Ic and RRR samples with a reduced duration 

of 30 h

• One heat treatment of short samples only (RRR and microscopy) for 
ejection at intermediate durations, 0–50 h

• Samples included virgin, rolled and extracted strands
• Note: for logistical reasons, extracted strand data are currently 

available only for the ERMC cable geometry, not FalconD
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Stability of ERMC-1: Standard HT
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Measured Imax(B) for a virgin ERMC-1 wire (1.0 mm 162/169) and a 

strand extracted from a FalconD trial cable after the standard heat 

treatment (650 °C 50 h), with average virgin wire Ic(B) for comparison

• For reference:
• Virgin ERMC-1 wire (1.0 mm 

162/169) and extracted strand 
(FalconD trial)

• Standard HT heat treatment 
(650 °C 50 h)
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Stability of ERMC-1: Shorter HT
• With the shorter heat treatment cycle 

(final step 650 °C 30 h)
• At 1.9 K, dramatic improvement in 

stability: virgin and extracted strand 
follow the same Ic(B) dependence, with 
no quenches
• Note extracted strand is from ERMC cable, 

not FalconD

• At 4.3 K, the behaviour is also improved, 
but quenches are still observed at 10 T 
and below
• Some anomalous/inconsistent results

• Additional testing is needed
• Verify the effect of cable layout 

and obtain statistics
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Measured Imax(B) for a virgin ERMC-1 wire and a strand extracted from an 

ERMC cable after the shorter heat treatment (650 °C 30 h)
Dashed lines: virgin Ic(B) with 30 h HT, solid line: average virgin ERMC-1 Ic(B) with 50 h HT

19RRP® |

0

200

400

600

800

1000

1200

1400

1600

1800

2000

6 8 10 12 14 16

I m
a
x

(A
)

Applied magnetic field (T)

Extracted, 1.9 K
Extracted Ic, 1.9 K
Virgin, 1.9 K
Virgin Ic, 1.9 K
Extracted, 4.3 K
Extracted Ic, 4.3 K
Virgin, 4.3 K
Virgin Ic, 4.3 K
ERMC-1 average, 4.3 K



0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 5 10 15 20

St
ra

n
d

 c
u

rr
en

t 
(A

)

Bp (T)

1.9 K4.3 K

Stability of ERMC-1 for eRMC
• Previous data replotted 

against Bp (including self 
field) and eRMC load line 
overlaid
• Extracted and virgin 

samples, for both heat 
treatments

• Self-field stability seems 
acceptable

• Note average quench 
currents shown, for single 
samples
• More statistics needed
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eRMC load line scaled to mean per-strand current, intercepts with fits to 

virgin and cabled Ic, overlayed with quench currents for both heat treatments
Cabled Ic is the lower of extracted strand Ic and 95 % virgin Ic for 30 h heat treatment
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Shorter HT: Effect on Ic
• Comparing the virgin wire 

data only, at 1.9 K:
• The shorter 30 h step reduces 

Ic by 9 %

• The stable Ic for a 30 h heat 
treatment exceeds the quench 
current for a 50 h heat 
treatment below ~12 T

• The identical scaling behaviour 
at high fields suggests no 
change in Bc2
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Measured Imax(B) for virgin ERMC-1 wire at 1.9 K for final 

heat treatment step durations of 50 h and 30 h
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Shorter HT: Effect on RRR

• Reducing the heat 
treatment duration 
increases RRR 
substantially both 
for rolled and 
round samples

• ~50 % for 30 h

• ~40 % for 40 h

15 December 2022

RRR of round and rolled wire after heat treatments with a final plateau of 

30 h, 40 h and 50 h at 650 °C
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Shorter HT: Micrographs
• Image analysis of electron micrographs shows:

• The thickness of unreacted barrier decreases sharply from 20–40 h

• Overall Nb and Nb3Sn areas change relatively slowly from 30 h 
onwards

• The optimum compromise between Ic and RRR is likely to lie in the 
30–40 h range
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30 h 40 h 50 h

SEM micrographs of sub-elements after heat treatments with a final 

plateau of 30 h, 40 h and 50 h at 650 °C

Dependence of Nb3Sn and Nb area, and average 

barrier thickness, on duration of 650 °C plateau

50 h

Unreacted Nb 

barrier

Nb3Sn
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ERMC-1: Cabling Degradation
• For the cable samples tested to date, degradation on cabling of ERMC-1 strands is:

• Much higher than typical for HL-LHC MQXF cable

• Higher for the more compacted, keystoned FalconD trial cable than ERMC
• Exceeds HL-LHC acceptance criterion of 5 % average Ic degradation

• Substantial difference in RRR degradation (30 % cf. 20 %) – likely to underestimate effects locally at thin edge

• The same sub-element distortion and (local) RRR degradation is likely to contribute to the degraded 
stability of FalconD extracted strands with the standard heat treatment

• Stability data for the 30 h heat treatment are currently only available for the less compacted ERMC 
layout – still to be determined how much of the difference is attributable to each factor
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Cable 

type

Keystone 

(°)

Pitch 

(mm)

Ic degradation RRR RRR degradation

Mean Range Mean Range Mean

FalconD
0.426 110 5.5 % 2.2–8.6 % 202 175–232 30.9 %

0.442 120 5.9 % 4.4–6.9 % 206 176–244 29.6 %

ERMC 0 120 4.1 % 2.0–8.0 % 228 189–265 20.5 %

MQXF 0.40 109 2.6 % 17 %
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Stability of DEM-1.1: Virgin Wire
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Measured Imax(B) for virgin DEM-1.1 wire (1.1 mm 162/169) 

after the standard heat treatment (665 °C 50 h), with average 

Ic(B) for comparison

• For DEM-1.1 wire with the standard heat 
treatment cycle (final step 665 °C 50 h)
• At 4.3 K, measured currents follow the Ic(B) 

extrapolated from 12–15 T down to 10 T 
• A full transition is measured at 14 T and above

• At 1.9 K, measured currents follow the 
extrapolated Ic(B) down to 11.5 T
• A full transition is measured at 13.5 T and above

• At ~10 T and below, the quench current at 1.9 K 
is less than that at 4.3 K

• Complicated by current limit of ~2000 A:
• Limited by current injection to the VAMAS

• Apparent low-field quench currents are 
~2000 A, so the true value may be higher

• If the values at 1.9 K are valid, note the 
4.3 K/1.9 K cross-over is at the same field 
(10 T) for ERMC-1 and DEM-1.1 for the 
(different) standard HTs
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Stability of DEM-1.1: Extracted Strand

• For a DEM-1.1 strand extracted 
from a trial cable for R2D2, 
after the standard heat 
treatment cycle (final step 
665 °C 50 h)
• Ic shows some cabling 

degradation relative to virgin wire

• But unlike the extracted strands 
of ERMC-1, stability behaviour is 
almost identical to the virgin 
wire
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Measured Imax(B) for extracted strand from R2D2 trial cable 

after the standard heat treatment (665 °C 50 h). The lines 

show the virgin DEM-1.1 wire Ic for comparison.
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Effect of 650 °C 30 h HT: DEM-1.1
• The same alternative heat treatment as for 

ERMC-1 was assessed: 650 °C 30 h

• As before for ERMC-1, Ic was then 
measurable at 1.9 K down to a lower field: in 
this case, the lowest measured (12 T)
• Note measurements were performed only until 

a current of 2000 A was reached for this tests

• The reduction in Ic due to the change in heat 
treatment was only 4 %
• Much lower than for ERMC-1, despite also 

reducing the temperature

• Bc2 reduced by ~0.5 T

• As expected from the previous slides, for the 
measured range this does not increase 
quench currents: further testing needed over 
the full field range, to currents > 2000 A
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Measured Imax(B) for virgin DEM-1.1 wire at 1.9 K for final 

heat treatment step durations of 50 h and 30 h
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R&D Wires
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Background for conductor development

KAT distributed tin wires
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Conductor Development (1)
• Conductor development activities for HFM have their origins in a development programme 

started in 2017 under the FCC study, which aimed to:
• Advance the state of the art for Nb3Sn wires to meet requirements for 16 T accelerator magnets

• Foster industrial development of Nb3Sn wires, supported by laboratory studies

• Procure and cable Nb3Sn wire for the magnet development programme

• Investigate the potential of alternative superconducting materials
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Conductor Development (2) 
• Collaborations with manufacturers on new designs for high-Jc

Nb3Sn wires can be grouped in three types:
• Distributed barrier: TVEL

• Distributed tin: JASTEC, KAT

• Tube-type: Furukawa

• JASTEC, KAT and TVEL wires have achieved Jc(B) 
comparable to the HL-LHC specification, and been validated 
in rolling studies and/or cabling trials reported previously

• Methods to increase Jc beyond this state of the art (Hf 
alloying, internal oxidation) have also been studied
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Conductor Development (3) 
• Several iterations of JASTEC, KAT and TVEL wire have been 

validated in rolling studies and/or cabling trials reported previously
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EUCAS 2019, ASC 2020 EUCAS 2021

JASTEC TVEL KAT TVEL
Diameter (mm) 0.8 1.0 1.0 1.0

Cu/non-Cu ratio 1.0 ± 0.2 1.2 ± 0.2 1.0 ± 0.1 1.0 ± 0.1

Nb modules (sub-els) 139 37 132 120

deff (µm) 55 132 – 144 - 71 – 79
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KAT Wire

15 December 2022

2020: Task 4 2021: Task 5

Quantity delivered (km) 5 20

Mean piece length (m) 230 1432

Diameter (mm) 1.0

Layout E199R192

Modules 132 Nb + 60 Sn-Ti 138 Nb + 54 Sn-Ti

ds (µm) 45 44

Cu/non-Cu 1.0 ± 0.1

• In the context of CERN 

collaboration agreement KE3449, 

KAT has been developing 

‘distributed tin’ wires

• In 2020, the ‘task 4’ trial wire was 

produced

• CERN rolling studies and trial 

cabling (FalconD layout)

• In 2021, pilot production was 

performed using a slightly 

optimised layout

• 20 km delivered in long piece 

lengths (mean 1432 m)

• Slightly reduced Sn content, with 

adapted heat treatment

• Similar CERN trials to task 4
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KAT: Geometry on Rolling/Cabling
• Recap of deformation 

behaviour presented 
for task 4 wire at 
EUCAS 2021:
• On rolling, modules 

slide past each other 
without significant 
deformation

• On cabling, in the most 
deformed edge sites, 
Nb modules are 
significantly distorted

15 December 2022

Rolled wire: SEM micrographs

Cabled strands: 
Optical micrographs, 

near thin edge

0 %
15 %

30 %

Cable: FalconD layout
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KAT Cable Cross-Section
• Similar features are apparent in the cross-section of the current cable

• Near the centre of the cable width:
• Close to uniaxial deformation, < 15 % reduction

15 December 2022

Thin edge Near centre

Optical micrographs of a cross-section of the trial cable produced with KAT task 5 wire

• Barrier intact

• Nb modules are 
relatively 
undeformed but 
their separations 
vary

• At the edge, in the 
least favourable 
configurations:
• Local barrier 

breaches

• Nb modules are 
significantly 
distorted
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KAT: RRR and Ic on Deformation
• Consistent with observations for previous 

wire generation:
• Virgin wire RRR is very high (mean ~300)

• Degradation on rolling is negligible up to 15 
% rolling reduction, and increases rapidly for 
rolling of 20–30 % reduction

• Extracted strand RRR remains high 
(degradation < 20 %)

as may be expected for a largely intact 
common diffusion barrier

• When measurable, Ic degradation on 
cabling is low (mean 1.3%, max 2.6%)
• Limited sample size due to stability issues 

(see later)

• Comparable to cabling trial of previous 
generation wire (range ‐5.9 % to +3.6 %)

• Promising indication that < 5 % degradation 
can be expected

15 December 2022

RRR for samples of KAT ‘task 5’ wire after rolling reductions of 0–30 %. 

The band of extracted strand RRR values is also marked for comparison.
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KAT Wire Stability
• The stability of two rolled samples 

of a KAT distributed tin wire (‘task 5’) 
was compared
• Similar behaviour for both samples

• At 4.3 K, Ic could be measured to ~13 T
• Ic degradation on rolling is low: ~3 % 

lower Ic after 20 % rolling cf. 10 % rolling

• Quench currents are significantly below 
extrapolated Ic(B) below ~12 T

• At low fields, quench currents are 
(tentatively) lower for the more deformed 
sample

• At 1.9 K, all tests quenched, with 
consistent currents for both samples
• Quench currents at 1.9 K are lower than 

Ic at 4.3 K in applied fields below 14.5 T

15 December 2022

Imax(B) for KAT ‘task 5’ wire rolled with reductions of 10 % 

and 20 %
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KAT Wire Stability for eRMC
• Overlaying the eRMC load 

line, quench currents are 
marginal at 4.3 K
• Note average quench 

currents from individual 
rolled (not extracted) 
samples

• More statistics desirable, but 
improvements in wire 
stability are expected to be 
needed before magnet use

15 December 2022

eRMC load line scaled to mean per-strand current overlayed with quench 

current data for rolled KAT samples
Shows data for 10 % and 20 % rolling; magnetic field includes self-field
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Summary
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Observations: RRP®

• In large-diameter RRP® wires optimised for high Ic, stability is a challenge, but not necessarily prohibitive

• Reduction of heat treatment duration to 30–40 h can be a viable strategy

• Effective despite a very high RRR for the standard heat treatment, and a still high Jc

• …but perhaps not much further headroom for even higher Jc wires, e.g. with APCs

• For round wires, quench currents are only increased modestly and over a limited field range
• The requirements and exact heat treatment should be assessed for each cable layout and application

• For ERMC-1:

• For round wire, the resulting reduction in Jc consumes much of the difference in Jc relative to MQXF wire at 30 h
• Further heat treatment optimisation may achieve a better compromise

• Effects are most significant for extracted strand, and possibly marginal with more compacted keystoned cables (FalconD vs. 
ERMC) – i.e. local RRR degradation and sub-element distortion at thin edge

• DEM-1.1 behaves significantly better than ERMC-1, noting also the higher ‘standard’ heat treatment temperature

• The ‘gain’ in Jc of ERMC-1 cf. MQXF comes partly from increased sub-element size and higher (‘standard’) Sn stoichiometry

• The latter constrains heat treatment optimisation and may be unfavourable on electromechanical grounds

• Especially after deformation (cabling), the ERMC-1 sub-element size may already be marginal for standard Sn being suitable – at 
least in this layout and low Cu/non-Cu

• Neither effect is likely to be available for smaller deff wires; and compensating measures in wire design (e.g. barrier thicknesses) 
may be in competition with low ds, sub-element spacing, Je etc.

• Further study needed to obtain statistics from multiple tests over the full field range
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Observations: Distributed Tin
• By nominal characteristics, one may anticipate higher stability for this distributed tin wire 

than ERMC-1 or DEM-1.1
• Very low geometrical sub-element size, higher Cu/non-Cu, comparable RRR and diameter, lower Jc

(for standard heat treatment)

• Absence of distributed diffusion barriers has several effects:
• Local contact between adjacent Nb3Sn regions probable – especially after cabling deformation –

increasing deff

• Observed in magnetisation measurements

• ‘Sub-elements’ separated by low conductivity Cu-Sn after reaction (Cu stabiliser is mostly at the 
periphery)

• Heat treatment optimisation may have lower potential to address stability, as it must be optimised 
for longer range tin transport (relative to ds)

• This may suggest:
• A higher importance of optimising copper spacing, module geometrical uniformity and deformation 

behaviour than for distributed barrier designs – optimisation work in progress at KAT

• More thorough analysis of the effect of stabiliser distribution and conductivity distributions would be 
valuable
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Conclusions
• Stability and cabling degradation are more challenging, but not yet prohibitive, for the currently available 

high-Jc wire layouts at ≥ 1 mm diameter
• Heat treatment optimisation provides some scope to achieve the desired compromise

• …but should also be addressed at the wire selection and design level

• Achieving higher Jc and smaller deff with sufficient stability poses different challenges and limits for distributed barrier 
and distributed tin wire types

• Routine testing, especially of new wire types, should be designed to assess stability and cabling 
degradation 
• Supplier tests (4.2 K only) and corresponding acceptance tests (Ic at 4.3 K and ≥ 12 T) do not necessarily identify 

cases of marginal stability

• RRR tests of extracted strands underestimate local RRR degradation at cable edges

• Greater sampling is needed to obtain sufficient statistics to reliably assess self-field stability

• This testing becomes challenging for the high currents required for very high Jc wires

• More detailed study of instabilities, and correlations with wire designs/characteristics, is also needed
• Measurements of the minimum trigger energy of magnetothermal instabilities initiated with a laser to be restarted

• The effect of gradients of composition, microstructure and conductivity (longitudinally and in the cross-section) should 
be investigated
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