

Development, construction, and commissioning of a fully automated cabling machine for round multi-layer REBCO cables

2022-12-15: MSC-Seminar

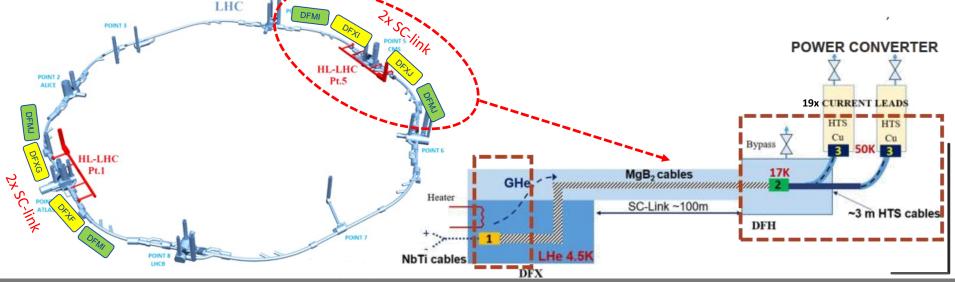
<u>C. Barth</u>^{*}, M.-P. Careil^{*}, A. C. Zurita^{*}, J. Fleiter^{*} & A. Ballarino^{*}

Acknowledgments:

G. Lenoir^{*}, J. Hurte^{*}, F. Girardot^{*}, S. Morisi^{*}, P. Koziol⁺, the TE-MSC-SCD section, the EN-MME design office, the EN-MME & TE-MSC mechanical workshops

*TE-MSC-SCD *BE-CEM

Outline



• Motivation

- Cabling machine concept
- Cabling
- Technical choices
- Latest improvements

Cold powering system upgrade, part of HL-LHC:

- 4 superconducting links connect magnets and power converters that are in gallery 10 m above the tunnel
 - multiple circuits per link, currents rated from 2 18 kA
 - MgB₂ cables in flexible cryostats connected to current leads through flexible REBCO cables
 - MgB₂ cables: 100 m long, He gas cooled (4.5 17 K)
 - REBCO cables: 2.5 4.5 m long, He gas cooled (17 50 K)

Cold powering system upgrade, part of HL-LHC:

- |120| kA in a SC-Link MgB₂ cable, multiple isolated circuits
- Distributed into separate REBCO cables in horizontal distribution cryostat (DFH)
- REBCO cable technical requirements:
 - round isotropic, similar Ø as MgB₂ subcables
 - 18 kA, 7 kA and 2 kA current ratings
 - (multiple) bending to 600 mm radius
 - operation at I_{nom} up to 60 K, 0.5 T
 - splice resistance < 10 n Ω
 - > 80 mm² Cu per cable
 - > 3.5 kV gHe, > 10 kV air

round REBCO cables

4x(1x18 kA) 1x(3x7 kA) 3x(4x2 kA)

current leads

Chosen REBCO cable type:

- REBCO tapes helically wound on braided Cu core
 - 7 tapes / layer, 4 mm wide, 20 μm Cu stabilized, 50 μm substrate
 - 2 layers, opposing winding directions, REBCO towards outside
- Outer Kapton tape insulation layer
 - 20 mm wide, 50 % overlap per tape
 - 2 tapes in same winding direction, 25 % overlap between tapes
- Same cable for all circuits: $I_{nom} = 3kA / cable @ 60 K, 0.5 T$
 - 2 kA circuit: 1 cable
 - 7 kA circuit: assembly of 3 cables
 - 18 kA circuit: assembly 6 cables
- 310 REBCO cables needed for SC-Link
 - cable lengths of 2.5 4.5 m, ~1 km total length

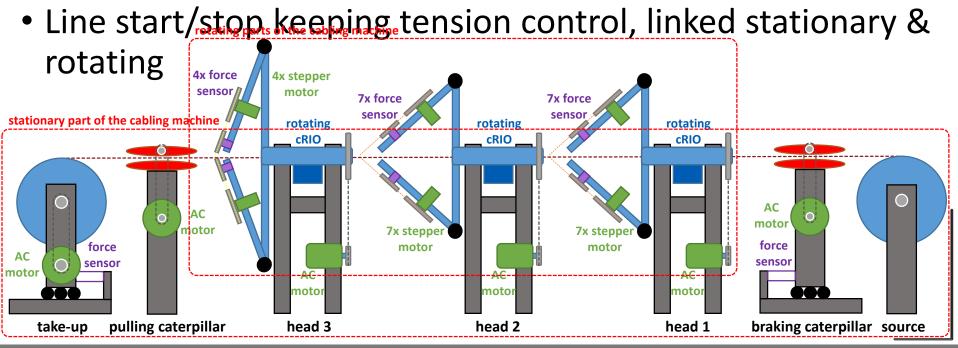
Why no use CORC[®] cables?

- Power transmission cable: large Cu section (> 80 mm²), low splice resistance < 10 nΩ, good current sharing
 - large Ø (11.3 mm) braided Cu core
 - REBCO oriented towards outside
 - minimize no. layers (max. 3)
- SC-Link part of LHC cold powering
 - long term operation, zero cabling degradation required
 - same QC as other LHC magnet components

Development & construction of REBCO cabling machine:

- 100 % in-house (development, design, fabrication)
- 6 months development & design, 12 months construction
- Detailed data logging for quality control

6


→ low J_e, high electrical stability

Machine concept: general

CERN

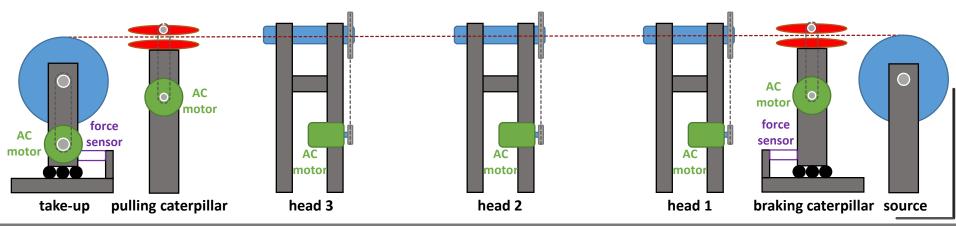
Cabling machine concept:

- 150 300 N tension in the core, well controlled: < ± 50 N
- Head rotations directly linked to linear core movement
- Precisely controlled tape tensions: < ±2 N deviation
- Individual adjustment of depositioning angle of each tape

CERN

Tension control methods:

- Brakes (mechanical, magnetic, electromagnetic)
 +: small & cheap, easy to implement, reliable
 - -: only effective with machine running, no control during standstill
- Variable clutch on motor turning in opposite direction
 +: effective during machine run & standstill, easy to control
 -: bulky & expensive, large speed changes challenging
- Bi-directional motor speed modulation
 - +: small & cheap, effective during machine run & standstill
 - -: difficult to control, unforgiving to errors, fast response needed


Implemented tension control system:

- FPGA controlled bi-directional motor speed modulation
 - 24-bit analog inputs, filtering & high speed PID control

Machine concept: stationary part

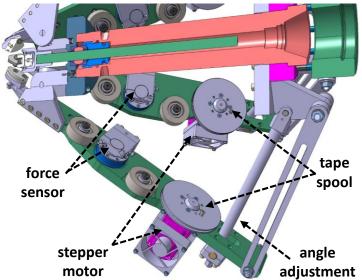
Functions:

- Pulling caterpillar sets linear cabling speed
- Take-up & braking caterpillar control core tension
 - braking caterpillar in the cabling zone, take-up for reel-to-reel operation
 - rail mounted with force sensors, motor speed PID controlled
- Head motor speed linked to pulling caterpillar speed
 - directly coupled to pulling caterpillar encoder feedback

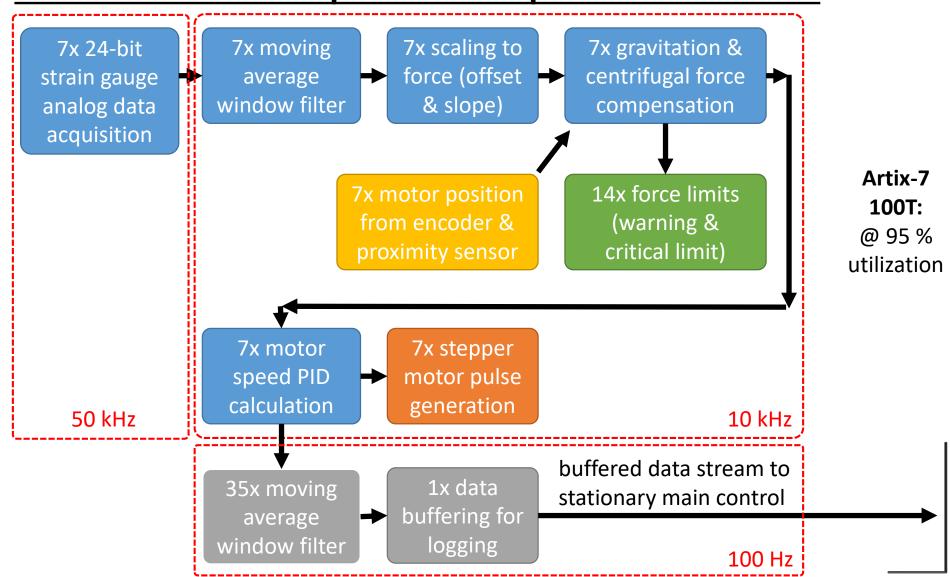
Machine concept: stationary part

Breaking caterpillar: 250 N tension setpoint:

Precise core tension control:

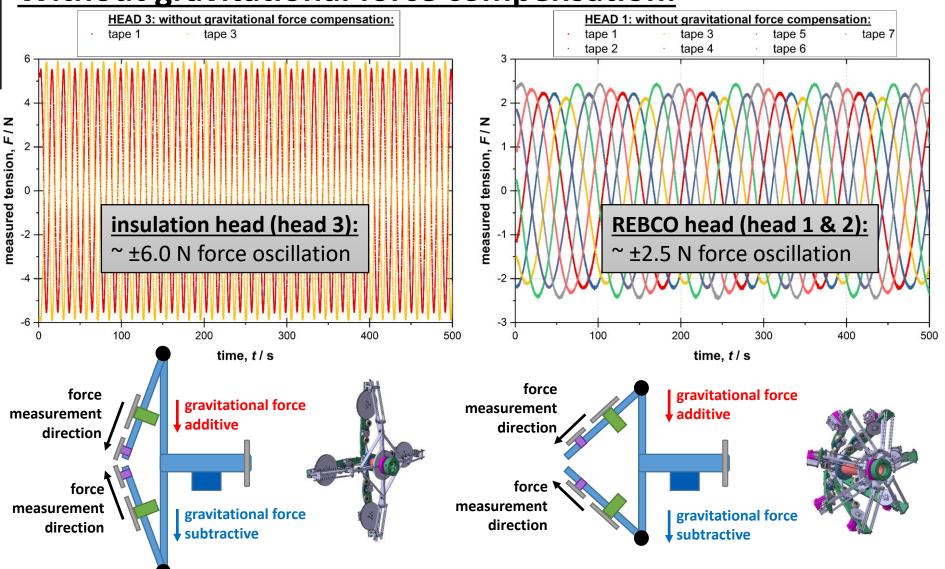

Take-up: 120 N tension setpoint:

160 270 measured tension, F/N measured tension, F / N 140 260 120 250 100 240 braking caterpillar: take-up: < ±10 N force deviation < ±20 N force deviation 80 230 0 20 40 60 80 100 120 0 20 40 60 80 100 120 time, t/s time, t / s AC AC motor motor force force AC sensor sensor motor take-up pulling caterpillar braking caterpillar source

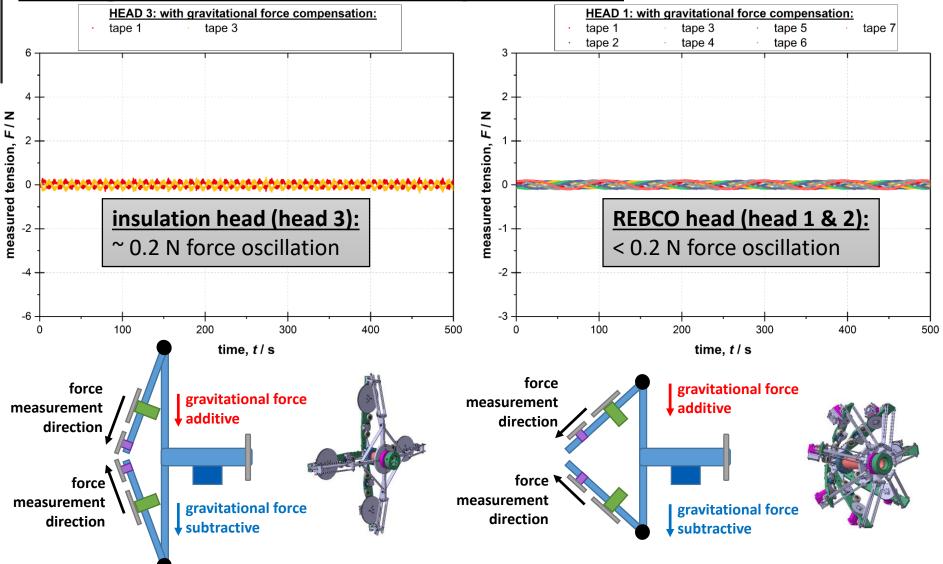

CHRISTIAN BARTH

Functions:

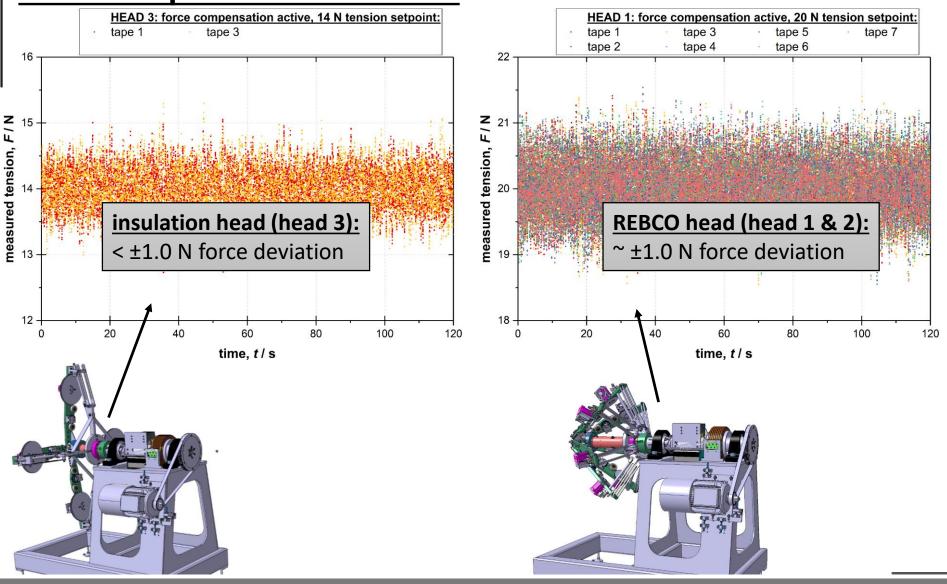
- 50 N strain-gauge force cells to measure tape tension
- Stepper motors regulate tape tension, PID controlled
- Data acquisition, post-processing and PID control in FPGA
 - 50 kHz, 24-bit data acquisition with digital filtering, gravitation & centrifugal force compensation
 - 10 kHz PID calculation and motor 'step' & 'direction' generation
- Closed loop system
 - each cabling head runs indecently
 - buffered data exchange for logging with stationary main control system
- Rotating contacts: 30 V DC supply
- Each arm: precise angle adjustment



FPGA based data acquisition & tape tension control:

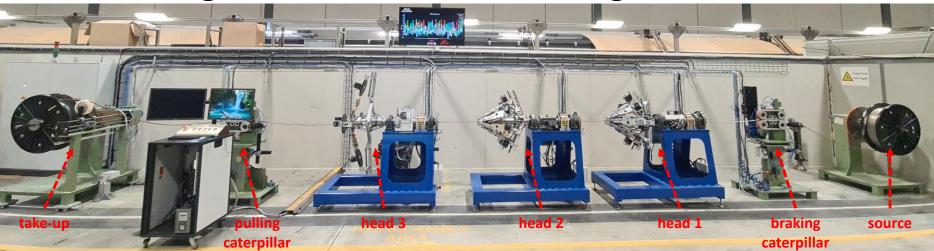


Without gravitational force compensation:



With gravitational force compensation:

Precise tape tension control:


CHRISTIAN BARTH

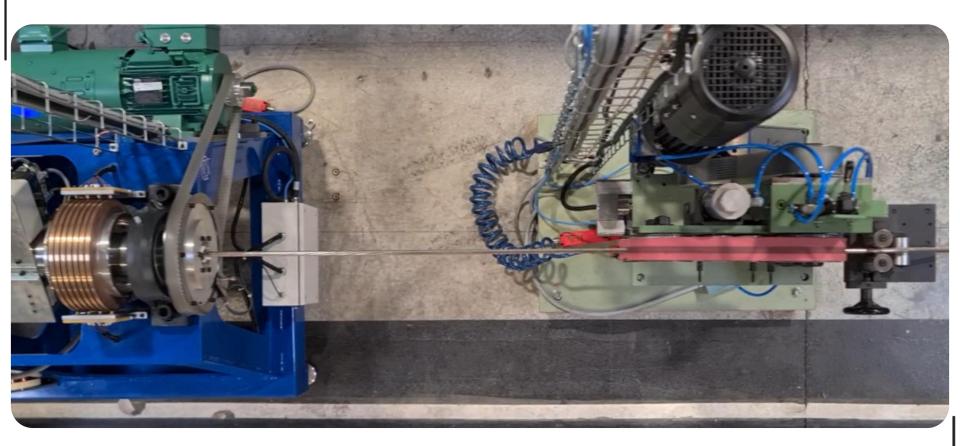
Cabling

CERN

Cabling parameters:

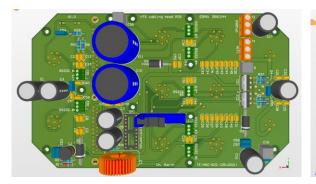
- Cabling parameters optimized through characterization of tapes extracted from cables
 - 250 N core tension, 120 N take-up tension
 - head 1: 20 N tape tension (inner REBCO layer)
 - head 2: 12 N tape tension (outer REBCO layer)
 - head 3: 14 N tape tension (Kapton tape insulation)
- Zero cabling related critical current degradation observed

Cabling


Cable performance:

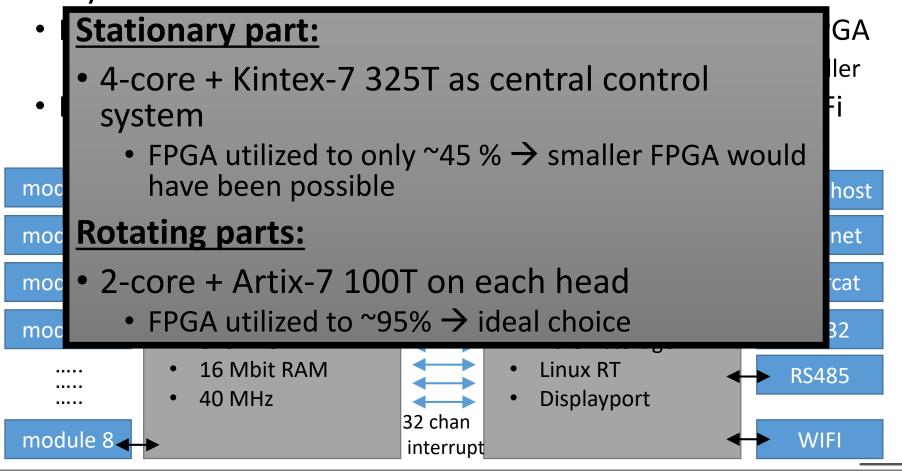
- Splice resistance reproducible & within expectations
 - 2 3 n Ω for Superox tape and 4 8 n Ω for Superpower tape
- Several unit lengths have been successfully cabled
 - cables work reliably, verified with extracted tape measurements

Cabling

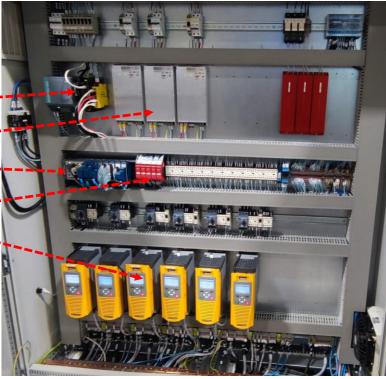

Technical choices: cabling head motors

- 7x 'PANdrive' Smart Stepper Motor from 'Trinamic'
 - stepper motor with integrated driver
 - controlled via TTL step & direction pulses
 - 50 KHz max. step frequency, 2 µs pulse length
 - setup via TTL RS232 serial interface
 - number of steps & micro-step resolution
 - max. current & hold current limits

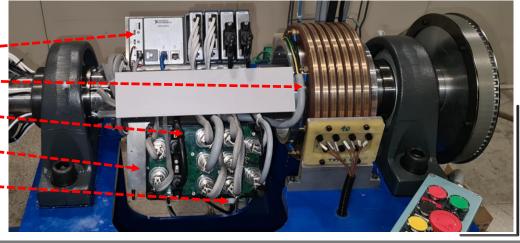
- <u>~200 CHF for 3.1 Nm model</u>, ~600 CHF for 7.0 Nm model
- Powered through rotating contact with 30 V DC (30 A)
 - custom PCB (8x 210 μ m) for power & signal distribution
 - integrated voltage regulators
 - voltage stabilization



Technical choices: cRIO (NI 'C'-Series)


- Compact, 5 g rotation, shock & vibration proof
- Flexible (almost any kind of modules), easy to program
- Always contains FPGA + x64 Linux RT controller

Technical choices: Control systems


Stationary part:

Wi-Fi communication with cabling heads
30 V DC, 30 A supplies for cabling heads
'main cRIO' (central control system)
'safe' machine security modules
inverters for industrial AC motors

Cabling head:

'rotating cRIO' (head control system)
 rotating contact, 30 V DC, 30 A
 custom PCB in electronic box
 integrated USB – RS232 (TTL) converters
 Wi-Fi communication with stationary part

CHRISTIAN BARTH

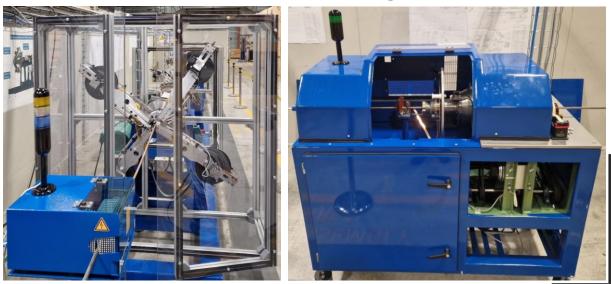
Latest improvements: machine security

- Safety cages around each cabling head constructed
 - automatically locked during machine run, interlocked
- Rigid barrier in front of the machine in preparation
- \rightarrow Machine security inspection by HSE planed early 2023

Latest improvements: cabling

CERN

Cable stabilization:


- Cu tape layer 'buffer' between REBCO layers for enhanced cable stability (electrical & mechanical)
 - dedicated depositioning head constructed & integrated
 - fully commissioned, will be used for SC-link HTS cables

Cable inspection:

- In-line 10 kV insulation tester installed & integrated
 - will be used for SC-link HTS cables

Cable protection:

 Pulling caterpillar force sensor as tension limiter

Summary

- Round REBCO cables optimized for power transmission
 - 14x 4 mm wide tapes in 2 layers, opposing winding directions
 - 1x 12 mm Cu buffer, 2x 20 mm wide Kapton tape insulation

Round REBCO cables work reliably, no cabling degradation

- Thank you for your attention -

Many thanks to:

G. Lenoir, J. Hurte, F. Girardot, S. Morisi, P. Koziol, the TE-MSC-SCD section, the EN-MME design office and the EN-MME & TE-MSC mechanical workshops

Christian Barth

12/15/2022