

Dark energy accelerated expansion Cosmic Microwave Background (CMB) afterglow light: 380,000 yrs. Quantum fluctuationș CMB 13.8 billion yrs ago redshift / distance time since CMB

Large-scale structure observations

Weak lensing cosmology

Light from distant galaxies passes the same foreground structure.

We measure the correlation of the **shapes** of source galaxy pairs [i,j] as a function of angular radius and to model the signal, we estimate the distribution of redshifts of the galaxy sample.

Do analysis tomographically, i.e. in redshift bins.

- Survey status: 6 yrs observations complete on the 4m CTIO Blanco Telescope
- 5000 sq. deg., observing in (u)griz(Y) filters
- Wide+Deep survey strategy
- DECam: a 570 Mpix camera 3 sq. deg. field of view
- Y3: 2013-2016 data
- Full area: 5000 sq. deg.
- 100M galaxies
- Mean redshift ~ 0.63

Weak lensing measurements today: >100 million DES galaxies

Weak lensing cosmology —— In practice —— S₈ tension: non-linear solution ——

Amon+2021

Lensing surveys

— Weak lensing cosmology — In practice — S₈ tension: non-linear solution —

Lensing surveys: the S₈ tension

Hyper-Supreme Camera Survey

Dark Energy Survey

Kilo-Degree Survey

Cosmic shear usual suspects

& blended

Challenge: Galaxies intrinsically aligned (IA). Is the IA model well-suited to late-type galaxies, which dominate lensing samples? Is it flexible enough to encompass our lack of understanding of this effect?

Scale cuts & baryonic effects

Challenge: Baryon feedback in galaxies alters the matter power spectrum on small scales. There is a large uncertainty on the amplitude and the extent of this effect.

Weak lensing cosmology —— In practice —— S₈ tension: non-linear solution ——

Hydrodynamical sims predict a large range in the extent of AGN feedback

1. Model with flexibility & uncertainty

Derived from a halo model approach Calibrated on BAHAMAS simulations 2. Toss small-scales
Cut data until bias < 0.1sigma

— Weak lensing cosmology — In practice — S₈ tension: non-linear solution —

Cosmic shear usual suspects

& blended

Intrinsic alignments

Challenge: Galaxies intrinsically aligned (IA). Is the IA model well-suited to late-type galaxies, which dominate lensing samples? Is it flexible enough to encompass our lack of understanding of this effect?

Scale cuts & baryonic effects

Challenge: Baryon feedback in galaxies alters the matter power spectrum on small scales. There is a large uncertainty on the amplitude and the extent of this effect.

Accurate lensing is hard!
...But we've made incredible progress.

— Weak lensing cosmology —— In practice —— S₈ tension: non-linear solution ——

Lensing surveys: the S₈ tension

Hyper-Supreme Camera Survey

Dark Energy Survey

Kilo-Degree Survey

Lensing surveys: the S₈ tension *on equal footing

Analysis choices matter!
To assess the lensing consistency or combine, surveys need to be analysed consistently.

- Sampler *
- Cosmological parameters sampled
- Priors on cosmological parameters
- Non-linear power spectrum modelling *
- Scales measured *
- Intrinsic alignment model *
- Baryon effects mitigation *
- Statistics used
- Tension metric

KiDS: Asgari, Heymans
DES: Porredon, Samuroff
KiDS & DES: Amon, Choi

Lensing surveys: the S₈ tension

- KiDS-1000 + DES Y3 constraints are 1.7σ lower than *Planck*.
- HSC Y3 is low by $< 2\sigma$.

— Weak lensing cosmology — In practice — S₈ tension: non-linear solution —

Lensing surveys: the S₈ tension

- KiDS-1000 + DES Y3 constraints are 1.7σ lower than *Planck*.
- HSC Y3 is low by $< 2\sigma$.
- Level of tension sensitive to astrophysics intrinsic alignments and baryonic feedback

Picking apart the S₈ tension

- Is it early Universe vs late?
- Is it a lensing thing?
- Is it a lensing and clustering thing?
- Is it small scales vs large scales?

Tested with BOSS + KiDS, DES, HSC

- Inconsistency between lensing and clustering driven by small scales
- Early vs. late Universe tension not significant on large scales

Amon & Robertson et al 2022

Picking apart the S₈ tension

- Planck LCDM and lensing surveys in tension
- CMB lensing agrees with Planck LCDM
- RSD not yet decisive currently agrees with both lensing and *Planck* LCDM
- **CMB lensing cross-correlations not shown

— Weak lensing cosmology —— In practice —— S₈ tension: non-linear solution ——

Picking apart the S₈ tension

A non-linear solution to the S_8 tension?

Alexandra Amon^{1*}, George Efstathiou¹[†]

1 Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge, CB3 OHA.

24 June 2022

We need something that alters how matter is distributed on 'small scales'.

Is this a smoking gun for non-standard dark matter?

Or is it telling us that we don't really understand galaxies?

"That isn't dark matter, sir-you just forgot to take off the lens cap."

A non-linear solution to the S₈ tension?

—— Weak lensing cosmology —— In practice —— S₈ tension: non-linear solution ——

A non-linear solution to the S₈ tension II

$$P_{\mathrm{m}}(k,z) = P_{\mathrm{m}}^{\mathrm{L}}(k,z) + A_{\mathrm{mod}}[P_{\mathrm{m}}^{\mathrm{NL}}(k,z) - P_{\mathrm{m}}^{\mathrm{L}}(k,z)]$$

A non-linear solution to the S₈ tension II

S₈ tension: baryonic physics or new dark matter properties?

$$P_{\mathrm{m}}(k,z) = P_{\mathrm{m}}^{\mathrm{L}}(k,z) + A_{\mathrm{mod}}[P_{\mathrm{m}}^{\mathrm{NL}}(k,z) - P_{\mathrm{m}}^{\mathrm{L}}(k,z)]$$

Do we understand baryonic feedback well enough to claim

 $A_{\text{mod}} = dark \ matter \ physics?$

S₈ tension: baryonic physics or new dark matter properties?

Do we understand baryonic feedback well enough to claim

 $A_{\text{mod}} = dark \ matter \ physics?$

The data is coming to test our hypothesis!

- ★HSC cosmic shear
- ★ACT CMB lensing
 ACT CMB lensing cross-correlations
 DESI clustering/RSD

Advanced Atacama Cosmology Telescope

Vera Rubin Observatory

Roman Space Telescope

Euclid Space Telescope

Test the scale-dependence of S₈ constraints Scrutinise non-linear modelling

Dark Energy Survey

Distinguishing the baryonic feedback

Kinetic Sunyaev-Zeldovich maps the distributions of gas around dark matter halos, giving a handle on the baryonic content.

Lensing probes the distribution of matter on small scales

Testing new modelling approaches with DES:

Are these models sufficiently flexible and do they give consistent results?

Reverse engineer the problem:

Can we 'rule out' any hydro-simulations by analysing cosmic shear with these models?

Leah Bigwood

Summary

- Advancements built to utilise the statistical power of the DES Year 3 and deliver robust cosmology Stay tuned for DES Y6!
- The lensing community is working together to compare analysis choices and combine data.

 KiDS-1000+DES Y3 out now!
- All lensing surveys find a **low value for S**₈ than the *Planck* constraint.
- Correction to the spectrum on non-linear scales may resolve the S₈ tension: either due to baryonic effects or non-standard dark matter

